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We present a detailed calculation of intensities of two-phonon and four-phonon Raman peaks in graphene.
Writing the low-energy Hamiltonian of the interaction of electrons with the crystal vibrations and the electro-
magnetic field from pure symmetry considerations, we describe the system in terms of just a few independent
coupling constants, considered to be parameters of the theory. The electron-scattering rate is introduced phe-
nomenologically as another parameter. The results of the calculation are used to extract information about these
parameters from the experimentally measured Raman peak intensities. In particular, the Raman intensities are
sensitive to the electron-scattering rate, which is not easy to measure by other techniques. Also, the Raman
intensities depend on electron-phonon coupling constants; to reproduce the experimental results, one has to
take into account renormalization of these coupling constants by electron-electron interaction.
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I. INTRODUCTION

In the past decades, Raman spectroscopy1 techniques
were successfully applied to carbon compounds, such as
graphite �see Ref. 2, and references therein� and carbon
nanotubes.3,4 Upon the discovery of graphene,5 Raman spec-
troscopy has proven to be a powerful tool to identify the
number of layers, structure, doping, disorder, and to charac-
terize the phonons and electron-phonon coupling �EPC�.6–12

So far, most of the attention was focused on the position and
width of the Raman peaks.

Here we present a detailed calculation of the intensities of
the multiphonon Raman peaks in graphene. Raman scatter-
ing involves an electron-hole pair as an intermediate state;
we show that the multiphonon Raman peaks are strongly
sensitive to the dynamics of this electron-hole pair. Thus,
Raman scattering can be used as a tool to probe this dynam-
ics. Writing the low-energy Hamiltonian of the interaction of
electrons with the crystal vibrations and the electromagnetic
field from pure symmetry considerations, we describe the
system in terms of just a few independent coupling con-
stants, considered to be parameters of the theory. The
electron-scattering rate is introduced phenomenologically as
another parameter. The results of the present calculation are
used to extract information about these parameters from the
Raman peak intensities measured experimentally.

As shown below, the Raman intensities strongly depend
on the electron-scattering rate; moreover, the electron-
phonon and electron-electron contributions to this rate can be

separated. This is especially important as there are very few
techniques giving experimental access to electron-scattering
rates, which, in turn, determine the transport properties of
graphene samples. Besides, the quasiclassical character of
the process imposes a severe restriction on the electron and
hole trajectories which can contribute to the two-phonon Ra-
man scattering: upon the phonon emission the electron and
the hole must be scattered backward. This restriction results
in a significant polarization memory: it is almost three times
more probable for the scattered photon to have the same
polarization as the incident photon than to have the orthogo-
nal polarization.

Also, the Raman intensities depend on electron-phonon
coupling constants; to reproduce the experimental results,
one has to take into account renormalization of these cou-
pling constants by electron-electron interaction. This renor-
malization is missed by local or semilocal approximations to
the density-functional theory, typically used for the ab initio
calculation of the coupling constants.

A. Fully resonant processes

Since graphene is a nonpolar crystal, Raman scattering
involves electronic excitations as intermediate states: the
electromagnetic field of the incident laser beam interacts pri-
marily with the electronic subsystem, and emission of pho-
nons occurs due to electron-phonon interaction. The matrix
element of the process can be schematically represented as

M � �
s0,. . .,sn

�i�Ĥe-em�s0��s0�Ĥe-ph�s1� ¯ �sn−1�Ĥe-ph�sn��sn�Ĥe-em�f�
�Ei − E0 + 2i���Ei − E1 + 2i�� ¯ �Ei − En + 2i��

. �1�

Here �i� is the initial state of the process �the incident photon
with a given frequency and polarization, and no excitations
in the crystal�, �f� is the final state �the emitted photon and n
phonons left in the crystal�, while sk, k=0, . . . ,n, label the

intermediate states where no photons are present, but an
electron-hole pair is created in the crystal and k phonons
have been emitted. Ei and Ek, k=0, . . . ,n, are the energies of
these states and 2� is the inverse lifetime of the electron
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�hole� due to collisions. Ĥe-em and Ĥe-ph stand for the terms in
the system Hamiltonian describing interaction of electrons
with the electromagnetic field and with phonons, respec-
tively.

In the calculations we do not include the phonon broad-
ening, assuming the phonon states to have zero width. First,
this approximation is consistent with the available experi-
mental information: the phonon width is about 10–20 cm−1

�2–3 meV at most,9,10 while the electronic broadening is at
least an order of magnitude higher �see the discussion below,
Sec. II C�. Second, this approximation is irrelevant provided
that we calculate the integrated intensities of the Raman
peaks, since they are determined by the total spectral weight
of the phonon state which does not depend on the phonon
broadening.

The photon wave vector is negligible, so momentum con-
servation requires that the sum of the wave vectors of emit-
ted phonons must vanish �provided that the impurity scatter-
ing is neglected�. For the same reason Raman scattering on
one intervalley phonon must be impurity assisted 	process
�b� in Fig. 1, giving rise to the so-called D Raman peak
. D
peak is absent in the experimental Raman spectrum of
graphene,6 showing that impurity scattering is indeed negli-
gible in these samples.

Looking at the intermediate electronic states involved in
the Raman scattering �Fig. 1�, we notice that for one-phonon
scattering 	processes �a� and �b�
 at least one intermediate
state must be virtual, since energy and momentum conserva-
tion cannot be satisfied simultaneously in all processes. Thus,
at least one of the factors in the denominator of Eq. �1� must
be of the order of the phonon frequency �ph 	for the
impurity-assisted scattering one of the electron-phonon ma-
trix elements in the numerator of Eq. �1� should be replaced

by the electron-impurity matrix element
. For the two-
phonon scattering 	process �c�
 all intermediate states can be
real, so that all energy mismatches in the denominator of Eq.
�1� can be nullified simultaneously and the result is deter-
mined by the electron-scattering rate 2�. We emphasize the
qualitative difference between the fully resonant process �c�
and the double-resonant13 process �b�, where one intermedi-
ate state is still virtual. We also note the analogous difference
between the two-phonon processes 	�c� and �d�
 in Fig. 1:
only process �c� is fully resonant, the other one involves an
energy mismatch of 2�ph. As a result, its amplitude will be
smaller by a factor �� /�ph.

Obviously, these arguments can be extended to all mul-
tiphonon processes with odd and even numbers of phonons
involved. In order to annihilate radiatively, the electron and
the hole must have opposite momenta; if the total number of
emitted phonons is odd, the electron and the hole must emit
a different number of phonons, which is incompatible with
energy conservation in all processes. Our main focus will
thus be on even-phonon processes, as their intensities are
determined by the electronic scattering.

The full resonance picture presented above assumes the
mirror symmetry between the electron and the hole spectra.
The electron-hole asymmetry can be included as a correction
to the Dirac spectrum; the electron and the hole energies can
be written as vp��0p2, where p is the momentum counted
from the Dirac point, v is the Dirac velocity, and �0 is the
asymmetry parameter. The energy scale �eh, quantifying the
role of the asymmetry in the Raman scattering, is defined as
�eh=�0��in

2 −�out
2 � / �2v�2, where �in and �out are the frequen-

cies of the incident and the scattered photons �the details are
given in Secs. VI B and VII C�. Namely, the arguments of
the previous paragraph hold if �eh��. In the opposite case,
it is �eh that determines the smallest value of the denomina-
tors in Eq. �1�. We will always assume that both � ,�eh
��ph.

In the real space, the typical size of the region of space
probed by the electron-hole pair in the fully resonant two-
phonon Raman scattering is �v /max�� ,�eh�. For the doubly
resonant defect-induced one-phonon scattering, the inverse
energy mismatch 1 /�ph determines the time duration of the
process by virtue of the uncertainty principle, so the length
scale of the process in the real space is v /�ph. Although this
length scale is much shorter than v /�, it is still much greater
than the lattice constant or the electron wavelength v /�.
Most likely, it is this length scale that has been found in the
spatial-resolved edge-assisted Raman scattering on a single
intervalley phonon,14 contrary to the interpretation of
Cançado et al.14

B. Quasiclassical real-space picture

The fully resonant Raman scattering, where the energy is
conserved in each of the elementary scattering processes,
admits a simple quasiclassical description, described qualita-
tively in this section and justified rigorously in Secs. VI and
VII. Let us denote by � the energy of the electron and the
hole in the photoexcited pair. Initially, it is given by the half
of the excitation frequency �in, �=�in /2�1 eV. After the

K

K

vpε =

(b)K(a)

vpε =

(c)K
(d)

FIG. 1. �Color online� Schematic representation of the role of
electron dispersion �Dirac cones, shown by solid lines� in the 	�a�
and �b�
 one-phonon and 	�c� and �d�
 two-phonon Raman scatter-
ings. Vertical solid arrows represent interband electronic transitions
accompanied by photon absorption or emission �photon wave vec-
tor is neglected�, dashed arrows represent phonon emission, and the
horizontal dotted arrow represents the impurity scattering.
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emission of n phonons it is decreased by n�ph; assuming
�ph	0.2 eV��, we neglect this decrease in the qualitative
considerations. Thus, during all the time taken by the Raman
scattering, electron and hole can be viewed as wave packets
of the size �v /�, propagating across the crystal along clas-
sical trajectories.

The electron and the hole are created in the same region
of space of the size �v /� around some point r0 at the mo-
ment of the arrival of the excitation photon. At this initial
moment they have opposite momenta p ,−p and opposite ve-
locities v ,−v �if the electron-hole asymmetry is taken into
account, the two velocities will have slightly different mag-
nitudes�, so they move along the straight lines, their positions
being re�t�=r0+vt, rh�t�=r0−vt. After a typical time t
�1 /� they undergo some scattering processes �e.g., phonon
emission�, where their momenta and �generally speaking� en-
ergies are changed. Each such elementary scattering process
occurs during a short time �1 /��1 /�. Thus, the trajectories
of the electron and the hole after their creation are repre-
sented by broken lines, with the typical segment length
�v /� �the electron mean-free path�. The crucial point is that
in order to recombine radiatively and contribute to Raman
signal, the electron and the hole should meet again within a
spatial region of the size �v /� and have opposite momenta.
The latter condition automatically implies that the number of
the phonons emitted by the electron and the hole is the same.
These considerations are illustrated in Fig. 2.

In the presence of a significant electron-hole asymmetry,
�eh
�, the described picture is modified. Namely, one of
the segments of either the electron or the hole trajectory has
the length v /�eh instead of v /�, the corresponding time trav-
elling being restricted by the phase mismatch rather than by
collisions.

II. SUMMARY OF THE MAIN RESULTS

A. On the labeling of Raman peaks in graphene

For the single-phonon Raman peaks the commonly ac-
cepted notations are G for the peak at 1580 cm−1 correspond-
ing to emission of an optical phonon with zero wave vector
and D for the defect-induced peak at 1350 cm−1 correspond-
ing to emission of an optical phonon with the wave vector
near K or K� points of the Brillouin zone.2 Sometimes one
also distinguishes the so-called D� peak at 1620 cm−1. This
peak is also defect induced and corresponds to emission of
an optical phonon with a small wave vector q�� /v. As men-
tioned above, in the present work we study only the clean
graphene, hence D and D� peaks are of no interest to us.

Unfortunately, there is no single commonly accepted sys-
tem for labeling of the multiphonon Raman peaks. The
strong peak at 2700 cm−1, corresponding to emission of two
phonons with the opposite wave vectors near the K and K�
points, was historically called G� �as it is not defect in-
duced�; sometimes it is denoted by 2D or by D* to stress that
it is the second overtone of the D peak. The peak at
3250 cm−1 corresponding to emission of two phonons with
two opposite wave vectors near the � point is sometimes
called G*, 2G, or 2D�. The latter notation reflects the fact
that the frequency of this peak is not exactly the double of
that of the G peak but rather the double of the defect-induced
D� peak.

In the following we use the notation n�+mK to denote
the peak corresponding to emission of n phonons with wave
vectors within �� /v from the � point and of m phonons with
wave vectors within �� /v from the K or K� points. For
multiphonon peaks this nomenclature is unambiguous. Thus,
the peaks at 2700 and at 3250 cm−1 will be called 2K and
2�, respectively.

B. One-phonon Raman processes

In the clean graphene the only one-phonon Raman pro-
cess allowed by the momentum conservation corresponds to
the emission of the E2 optical phonon with zero wave vector
and frequency at 1580 cm−1. For this process the situation
turns out to be drastically different from that described by the
qualitative considerations of Sec. I A. As shown in Sec. V, if
one approximates the electron spectrum by the Dirac cones,
the numerator of Eq. �1� vanishes due to high symmetry of
the low-energy electronic Dirac Hamiltonian �as compared to
the microscopic symmetry of the crystal�. Thus, the main
contribution to the Raman amplitude comes from the regions
of the electronic Brillouin zone far from the Dirac points. As
a consequence, the typical energy mismatch in the denomi-
nator of Eq. �1� is of the order of the whole electronic band-
width. Thus, the Raman process, responsible for the
1580 cm−1 peak, is completely off resonant and the picture
shown in Fig. 1 for process �a� is wrong.

As a result, the intensity of the peak is expected to be
insensitive to most external parameters: polarization, elec-
tron concentration, degree of disorder, etc. To characterize
this intensity, one has to introduce an additional parameter
into the theory which has no simple relation to the param-
eters of the low-energy effective Hamiltonian. The resulting

(b)

(a)

(c)

FIG. 2. �Color online� �a� An example of a quasiclassical
electron-hole trajectory contributing to the four-phonon Raman
scattering. 	�b� and �c�
 Trajectories with emission of two phonons
�b� not contributing and �c� contributing to the two-phonon Raman
scattering. In all pictures the lightning represents the incident pho-
ton which creates the pair. The solid lines denote the free propaga-
tion of the electron and the hole. The flash represents the radiative
recombination of the electron-hole pair. The dashed lines denote the
emitted phonons.
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intensity of the peak is given by Eq. �55�; it is proportional to
the fourth power of the excitation frequency which is the
standard result for Raman scattering when the difference be-
tween the frequencies of the incident and scattered photons is
small. This dependence also agrees with the experimental
results of Ref. 15.

Note that the results described above do not hold for the
defect-induced peak at 1350 cm−1. For this peak the double-
resonance picture,13 shown in Fig. 1, process �b�, is fully
adequate.

C. Two-phonon Raman processes

As the phonons are emitted by electrons with momentum
�in / �2v�, the largest possible phonon momentum is qmax
= ��in+�out� /2v, corresponding to the electron and hole
backscattering �for the 2K peak at 2700 cm−1 we count the
phonon momenta from the K and K� points�. It would be
natural to expect that any pair of phonons with opposite mo-
menta q, −q and �q �	qmax can be emitted, the only excep-
tion being q=0 which is prohibited by symmetry2 and the
nearby ones which are suppressed due to the smallness of the
matrix elements. These arguments would predict the width of
the peak to be of the order of �vph /v��in, where vph is the K
phonon group velocity. Besides, the shape of the peak would
be strongly asymmetric: a sharp cutoff on the high-energy
side at the frequency 2�ph�qmax� due to the resonance restric-
tion and a smooth dropoff toward zero at 2�ph�q=0� due to
the matrix element suppression. The phonon dispersion can
be deduced from the dependence of the frequency of the
impurity-assisted one-phonon D peak in graphite on the ex-
citation energy �in: d�ph /d�in=vph /v�50 cm−1 /eV.16–19

Thus, for �in=2 eV these arguments give the width of the 2K
peak to be about 200 cm−1. However, the experimentally ob-
served width is only about 30 cm−1 at �in=2.2 eV, and its
shape is quite symmetric.6,9

The observed small width of the peak is explained by the
quasiclassical picture, presented in Sec. I B. If upon the
emission of phonons the electron and the hole are scattered
by an arbitrary angle, as shown in Fig. 2�b�, they will not be
able to meet at the same spatial point in order to recombine
radiatively and contribute to the two-phonon Raman peak.
Only if the scattering is backward, this event is possible, as
illustrated in Fig. 2�c�. This condition fixes the wave vectors
of the emitted phonons to be q=qmax=2� /v. The small de-
viations of the scattering angle from � are restricted by the
quantum diffraction, and the width of the two-phonon Ra-
man peaks, instead of being ��vph /v��in, is determined by a
much smaller energy scale �see the discussion below�.

The dominance of the electron and hole backscattering
manifests itself in the polariazion memory of the Raman sig-
nal. If the incident light is linearly polarized, the probability
of excitation of the electron-hole pair with a given direction
of momenta is proportional to sin2 , where  is the angle
between the electric-field vector of the light and the mo-
menta. Thus, upon backscattering and radiative recombina-
tion, the probability to detect a photon of the same polariza-
tion as the original one is � sin4  and that of the orthogonal
polarization is � sin2  cos2 . Averaging over , we obtain

the ratio of intensities for the detection of polarization paral-
lel and perpendicular to that of the incident light to be
I / I�=3. This ratio may be slightly decreased due to a finite
aperture �see the discussion in Sec. IV B�.

The calculation of the intensities of the two-phonon Ra-
man peaks is performed in Sec. VI. The explicit expressions
for the intensities of the 2K and 2� peaks, obtained under the
assumption of Dirac spectrum for the electrons, are repre-
sented by Eqs. �66� and �69�. Both are proportional to 1 /�2,
where 2� is the electron �hole� inelastic-scattering rate. If the
latter is smaller than the electron-hole asymmetry �eh, then,
according to the arguments of Sec. I A, it is �eh that restricts
the energy denominators from below. Formally, this results
in replacement �75� in both Eqs. �66� and �69�.

Numerically, �0�1 eV�2 /v2�0.1 eV �see, e.g., Ref. 20�,
so the relative correction to Eq. �66� for small �eh can be
estimated as −	�1 /2��eh

2 / �2��
2 /2�−10−4��in /2��2. The to-
tal electronic broadenings 2� were measured by time-
resolved photoemission spectroscopy to be 20 meV in Ref.
21 and 25 meV in Ref. 22 �all values taken for �=�in /2
=1 eV�. A recent angle-resolved photoemission spectroscopy
�ARPES� measurement gives a significantly larger value for
2��100 meV.23 Thus, the case �
�eh seems to be more
relevant for the description of experiments than the opposite
one.

The Raman matrix element corresponding to emission of
two phonons with given wave vectors q and −q is given by
Eq. �64� for �
�eh. From this dependence one can deduce
the line shape of the two-phonon peaks 2K, 2�,

dI2�

d�
�

1

	�v/vph,��2��/2 − ���2 + 4�2
3/2 , �2�

where �=K, �, 2�� is the central frequency for each peak,
and vph,� is the group velocity of the corresponding phonon.
Thus, the full width at half maximum �FWHM� of each peak
is given by

FWHM2� = �22/3 − 1
vph,�

v
8�� 0.77

vph,�

v
8� . �3�

For ���eh the dependence of the Raman matrix element on
q is described by Eq. �73�. The line shape corresponds to two
peaks separated by �vph,� /v�4�eh. Experimentally, one sees
just one 2K peak with the FWHM about 30 cm−1 at the ex-
citation frequency �in�2 eV.6,9 This corresponds to an un-
realistically large value of 2��0.2 eV. Most likely, this in-
dicates that two-phonon peaks are broadened by other
mechanisms, not taken into account in the present work. In
particular, Eq. �2� neglects �i� the broadening of the phonon
states and �ii� the anisotropy of the phonon dispersion �trigo-
nal warping of the phonon spectrum�. A detailed study of
these effects would require introduction of additional param-
eters into the theory, so we prefer to postpone such study for
the future work. It is worth emphasizing again that the inte-
grated intensity of the peaks, which is the main focus of the
present study, does not depend on these details.

In view of the results of the present paper it is worth
mentioning the experimental measurements of the intensity
I2K as a function of doping. While in Ref. 9 no significant
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dependence was observed, Ref. 12, where higher doping lev-
els were reached, shows quite a strong dependence of I2K / I�
on doping. The intensity I� of the off-resonant single-phonon
1580 cm−1 peak should not depend on doping �although the
phonon width does exhibit such a dependence, the total spec-
tral weight of the phonon state, determining the integrated
intensity of the peak, must be preserved�. At the same time,
the intensity I2K, if determined by the electron inelastic life-
time, should be sensitive to the concentration of carriers.
Indeed, in the intrinsic graphene at low temperatures the
photoexcited carriers do not participate in electron-electron
collisions, as the phase-space volume is restricted.24 As the
carriers are added to the system, the electron-electron colli-
sions become possible, thus the total � increases, and the
intensity I2K is decreased, in qualitative agreement with the
observation in Ref. 12.

D. Four-phonon Raman processes

The motivation to study the four-phonon Raman process
comes from the following picture for the fully resonant pro-
cesses. The incident photon creates an electron and a hole—
real quasiparticles which can participate in various scattering
processes. If the electron emits a phonon with a momentum
q, the hole emits a phonon with the momentum −q, and after
that the electron and the hole recombine radiatively, the re-
sulting photon will contribute to the two-phonon Raman
peak. If they do not recombine at this stage, but each of them
emits one more phonon, and they recombine afterward, the
resulting photon will contribute to the four-phonon peak, etc.
Three-phonon processes, not being fully resonant, are not
interesting in this context.

Besides phonon emission and radiative recombination,
electron and hole are subject to other inelastic-scattering pro-
cesses, which can also be viewed as emission of some exci-
tations of the system. In principle, Raman spectrum should
also contain the contrubution from these excitations, which
are left in the system after the radiative recombination of the
electron and the hole. The key point is that for real quasipar-
ticles, the probability to undergo a scattering process � is
determined by the ratio of corresponding scattering rate 2��
to the total scattering rate 2����2�� not by the history.
This probability determines the relative frequency-integrated
intensity of the corresponding feature in the Raman spec-
trum. Thus, the ratio of integrated intensity I�2n+2�K of the
Raman peak corresponding to �2n+2�K phonons to that for
2nK phonons �I2nK� must be proportional to ��K /��2, where
2�K is the rate of emission of each of the two K phonons, and
the square comes from the phonon emission by the electron
and the hole. This conclusion depends weakly on the relation
between � and �eh only through a logarithmic factor.

In the doped graphene, the most obvious competitor of the
phonon emission is the electron-electron scattering; the opti-
cally excited electron can kick out another one from the
Fermi sea, i.e., to emit another electron-hole pair. Thus, Ra-
man spectrum should contain contribution from electron-
hole pairs; however, their spectrum extends all the way to the
energy of the photoexcited electron �optical energy� in a
completely featureless way. Thus, it cannot be distinguished

from the parasitic background which is always subtracted in
the analysis of Raman spectra and cannot be seen in the
Raman spectrum directly. However, assuming �=�K+��
+�ee, where 2�� is the rate of emission of phonons from the
vicinity of the � point of the first Brillouin zone and 2�ee is
the electron-electron collision rate, one can extract the value
of �ee relative to phonon emission rates from the experimen-
tal data. More precisely, in this way one obtains the rate of
all inelastic-scattering processes where the electron loses en-
ergy far exceeding the phonon energy.

Note that arguments leading to I�2n+2�K / I2nK� ��ph /��2 are
not specific for graphene; in fact, this is nothing but Breit-
Wigner formula, applied once for the electron and once for
the hole. Multiphonon Raman scattering has been studied in
wide-gap semiconductors both experimentally25,26 �up to ten
phonons were seen in the Raman spectra of CdS� and
theoretically.27,28 In a wide-gap semiconductor an optically
excited electron does not have a sufficient energy to excite
another electron across the gap, so the electron-electron
channel is absent. In addition, interaction with only one-
phonon mode is dominant, so the ratios of subsequent peaks
are represented by a sequence of fixed numbers. The simple
band structure �one valley for CdS in contrast to two valleys
for graphene� allowed a calculation of the whole sequence. A
more complicated electronic band structure in graphene
makes it problematic to calculate the whole sequence, so we
restrict ourselves to the calculation of I4K for the most in-
tense four-phonon peak.

This calculation is performed in Sec. VII. Its result de-
pends, besides the relation between � and �eh, also on their
relation to the energy scale �in�vph /v�, characterizing the
phonon dispersion. In Sec. II C we have already discussed
this energy scale; for �in=2 eV we have �in�vph /v�
�100 cm−1�12 meV. The meaning of this energy scale is
the difference between the energies of the electron and the
hole after each of them has emitted two phonons with almost
arbitrary momenta �the only restriction is that the sum of all
four phonon momenta must vanish�. If �in�vph /v��� ,�eh,
which seems to be the case �see the discussion in Sec. II C�
then this difference can be neglected, and the intensity of the
4K peak is given by Eq. �101� for �
�eh �which is likely to
be the case relevant for most experiments and which was
reported in the short paper by Basko29� and by Eq. �104� for
���eh; the polarization memory is lost in both these cases,
I � I�. In the case �in�vph /v�
� ,�eh the intensity I4K is
given by Eq. �118�, and a significant polarization memory is
expected, up to I / I��3.

A thorough experimental study of the intensity I4K �in
particular, its dependence on doping� is still lacking. Our
prediction for the case �
�ph ,�in�vph /v�, which we believe
to be the experimentally relevant one, is29,30

I4K

I2K
� 0.11� �K

�K + �� + �ee
�2

. �4�

E. Renormalization of the coupling constants

In the calculations of the Raman intensities, described
above, electron-phonon coupling constants entered as param-
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eters of the theory, without any assumptions about their val-
ues, except for the relations fixed by the symmetry of the
crystal. In particular, the two-phonon peak intensities I2K and
I2� are determined by two independent dimensionless cou-
pling constants which we denote �K and �� 	see Eq. �24� for
the definition
. A simple estimate of the coupling constants
can be obtained from the tight-binding nearest-neighbor
model of the graphene crystal. In this model the only param-
eter characterizing the electron spectrum is the nearest-
neighbor electronic matrix element t0, and the electron-
phonon interaction is characterized by its change with the
bond length, �t0 /�a. In this model we obtain �K /�� to be
given by the inverse ratio of the corresponding phonon fre-
quencies, about 1.2; the same result up to a few percent is
obtained from the density-functional theory �DFT� calcula-
tions in Ref. 31. At the same time, by comparing the experi-
mentally measured intensities of the different two-phonon
peaks and using the result of our calculation performed in
Sec. VI, we can independently extract the ratio of the cou-
pling constants. According to the data of Ref. 6, I2K / I2�
�20, which gives �K /���3.

To explain this discrepancy we first analyzed the effect of
the electronic trigonal band warping, which affects I2K and
I2� differently. The corresponding calculation is done in Sec.
VI B. For �in=2 eV, we estimate the relative contributions
of the warping term as 5�10−4 for I2K and 5�10−2 for I2�,
which are far too little to account for the observed ratio
I2K / I2�. We are thus led to the conclusion that the observed
ratio I2K / I2� must be due to the difference of the coupling
constants not accounted for by the DFT calculation. A similar
conclusion about the insufficiency of the DFT calculation of
the electron-phonon coupling constants has been drawn in
Ref. 32, where an attempt was made to explain the experi-
mental data obtained by ARPES �Ref. 23� using the results of
the DFT calculation.

At the same time, we should note that the dimensionless
coupling constant �� for the phonons near the � point,
as calculated by DFT �Ref. 31� ����0.028�, agrees reason-
ably well with the measured one: the measurements of the
linear in the wave vector q term in the phonon dispersion
�Kohn anomaly due to electron-phonon interaction�, �ph�q�
−�ph�q=0����� /8�vq, give ���0.024 �see Ref. 33�; the
measurements of the dependence of the phonon frequency
�ph on the electron Fermi energy �F, ��ph���� /2�� ��F�,
give ���0.034 �Ref. 9� and ���0.027.10

We show that the difference between the ratio �K /���3
extracted from the Raman peak intensities and �K /���1.2
obtained by the DFT calculation,31 is due to the part of Cou-
lomb interaction between electrons, not picked up by the
DFT when local approximations are used for the exchange-
correlation functional, such as the local-density approxima-
tion �LDA� or the generalized gradient approximation
�GGA�, namely, logarithmic renormalizations.34 Coulomb
interaction has been known to be a source of logarithmic
renormalizations for Dirac fermions.35–37 Coulomb renormal-
izations in graphene subject to a magnetic field have been
considered in Ref. 38; Coulomb effect on static disorder has
been studied in Refs. 39–41. Essentially, the idea of the
renormalization of the coupling constants is that the matrix
element of the electron-phonon interaction should be taken

not between the noninteracting electronic states but between
the states dressed by the Coulomb interaction. If the typical
electronic energy in the problem is � ��1 eV in the case of
Raman scattering�, the renormalization is determined by the
Coulomb interaction at all length scales from the shortest
ones �lattice constant� to the electron wavelength v /�. It is
this long-range part of the exchange and correlation that is
missed by the local approximations in the DFT calculation,
which take into account correctly only the short-range corre-
lations �at the distances of the order of the lattice constant�.

In Sec. VIII A we calculate the renormalization of the
dimensionless electron-phonon coupling constants �a pre-
liminary account of this work was given in the short paper34�
and show that the coupling constant �� for the phonons near
the � point is not renormalized �hence the agreement be-
tween the value of �� calculated by the DFT and measured in
the experiments, as mentioned above�, while the coupling
constant �K for the phonons near the K point, which is re-
sponsible for the 2K Raman peak, is enhanced by the Cou-
lomb interaction. This enhancement depends on the elec-
tronic energy, as shown in Fig. 22. For the electronic energy
of 1 eV this enhancement is in quantitative agreement with
the measured ratio I2K / I2�, provided that the screening of the
Coulomb interaction by the substrate is weak. The depen-
dence of the enhancement on the electronic energy translates
into the dependence of I2K / I2� on the excitation frequency,
which can be checked experimentally. Similarly, as the Cou-
lomb interaction is screened by the substrate with a dielectric
constant �� �its high-frequency value�, the dependence of
I2K / I2� on �� can also serve as an experimental check of the
theory.

We also show in Sec. VIII B that the electron-phonon
coupling itself is a source of logarithmic renormalizations.
However, due to the smallness of the coupling constants this
effect is much weaker than the effect of the Coulomb inter-
action.

F. Structure of the paper

In Sec. III the low-energy Hamiltonian of the interaction
of electrons with the crystal vibrations and the electromag-
netic field is written from pure symmetry considerations. In
Sec. III A the symmetry of the graphene crystal is reviewed.
In Sec. III B the symmetry considerations are used to write
the electronic part of the Hamiltonian. Section III C is dedi-
cated to the symmetry analysis of the Dirac part of the elec-
tron Hamiltonian, whose symmetry is significantly higher
than the symmetry of the crystal. Section III D is dedicated
to the symmetry analysis of the in-plane crystal vibrations. In
Secs. III E and III F we write the Hamiltonian of interaction
of electrons with the optical and acoustical vibrations, re-
spectively. Section III G is dedicated to the symmetry analy-
sis of the out-of-plane vibrations of the graphene crystal. In
Sec. III H the Hamiltonian of the interaction of electrons
with the electromagnetic field is written.

Section IV describes the general scheme of the calculation
of Raman-peak intensities using the standard perturbation
theory. In Sec. IV A Green’s functions are introduced, and in
Sec. IV B the general expression for the Raman-scattering
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probability is derived. In Sec. IV C we discuss the electron
inelastic scattering and calculate the electronic self-energy
due to the electron-phonon coupling.

In Sec. V one-phonon Raman scattering is discussed and
it is shown that the calculation of the one-phonon peak in-
tensity cannot be performed within the low-energy theory. In
Sec. VI the two-phonon Raman-peak intensities are calcu-
lated, first, under the assumption of the Dirac electron spec-
trum �Sec. VI A� and then taking into account the trigonal
band warping and electron-hole asymmetry �Sec. VI B�. In
Sec. VII the intensity I4K of the most intense four-phonon
peak is calculated. Sections VIII A and VIII B are dedicated
to the renormalization of the electron-phonon coupling con-
stants due to Coulomb interaction and due to the electron-
phonon interaction, respectively.

III. SYMMETRIES AND HAMILTONIAN (REF. 42)

A. Symmetry of the crystal

Since the typical energy of the incident photon �about
2 eV� is much smaller than the �-electron bandwidth

��20 eV�, one can expect the low-energy excitations to play
the dominant role. In this section we employ standard sym-
metry analysis43 to fix the form of the low-energy Hamil-
tonian. We prefer not to choose any specific basis and use
algebraic properties.

The carbon atoms of graphene form a honeycomb lattice
with two atoms per unit cell, labeled A and B �Fig. 3�, the
distance between nearest neighbors being a=1.42 Å. Three
out of four electrons of the outer shell of each carbon atom
form strong � bonds with its three nearest neighbors and
represent no interest to us. The remaining � orbitals �one per
each carbon atom� give rise to the half-filled � band.

In this paper we will not consider the dimension, perpen-
dicular to the crystal plane, so the point symmetry group of
the graphene crystal is C6v. It contains 12 elements: the iden-
tity, five rotations C6

n, n=1, . . . ,5 �Cm denoting the rotation
by 2� /m�, and six reflections in planes perpendicular to the
crystal plane. The three reflections leaving the A and B sub-
lattices invariant are denoted by �a , �b , �c, while those
swapping the A and B sublattices points will be denoted by
�a� , �b� , �c�. Table I lists the irreducible representations of the

TABLE I. Irreducible representations of the groups C6v and C3v and their characters.

C6v E C2 2C3 2C6 �a,b,c �a,b,c�

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B2 1 −1 1 −1 1 −1

B1 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

C3v E 2C3 �a,b,c�

A1 1 1 1

A2 1 1 −1

E 2 −1 0

a2 a1

A A A

B BB

A A A

B B B

A A A

B B B

B B B

AAA

FIG. 3. The honeycomb lattice with two atoms �A and B� per
unit cell. Tripled unit cells are shown by dashed hexagons.
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� � � �

K

K

K
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σa

σc

σc
K

Γ K

K
σ

σ

b

b

FIG. 4. The first Brillouin zone corresponding to the honeycomb
lattice and its wrapping upon tripling of the unit cell. Regions with
the same shading should be translated so that the K ,K� points move
to the � point to form the first Brillouin zone of the crystal with the
tripled unit cell. Solid lines show the �a , �b , �c reflection axes.
The �a� , �b� , �c� reflection axes are shown by dashed lines �not
labeled�.
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group C6v and their characters.
The first Brillouin zone of the crystal is a hexagon �Fig.

4�. Out of the six corners of the hexagon only two are in-
equivalent. They are called K and K� points. The group of
the wave vector at these points is C3v. The states at these
points are twice degenerate, transforming according to the
two-dimensional irreducible representation �E� of C3v.
Transformations, swapping K and K�, thus belonging to C6v
but not to C3v �reflection �v in the plane, perpendicular to
that of �v�, and rotations C2 ,C6�, fix the energies at K ,K� to
be equal. One can form real linear combinations of wave
functions from K and K� points which transform according
to E1 and E2 representations of C6v. The degeneracy at K ,K�
points, in combination with the absence of any other states in
the Brillouin zone with the same energy, fixes the Fermi
level of a half-filled band to be at this energy, which is thus
natural to choose as �=0.

Instead of dealing with degenerate states at two different
points of the Brillouin zone �K ,K��, one can triple the unit
cell of the crystal. The new unit cell contains six atoms
which form a hexagon �Fig. 3�, while the new Brillouin zone
is only 1 /3 of the original one �Fig. 4�. The advantage of this
approach is that now both K and K� are mapped onto the �
point, so one does not have to consider the two of them
separately.

Tripling of the unit cell means that two translations ta1
and

ta2
are factorized out from the translation group of the crys-

tal, so they should be added to the point group, which be-
comes C6v� =C6v+ �ta1

C6v�+ �ta2
C6v�. Irreducible representa-

tions of this group and their characters are shown in Table II.
The states of the � electrons at the new � point form a
six-dimensional representation which is reduced as A1+B2
+G�, where A1 and B2 states are the nondegenerate ones
corresponding to the old � point, while the four-dimensional
irreducible representation G� contains the zero-energy states
inherited from the old K ,K� points.

In order to write down the low-energy electronic Hamil-
tonian, we have to consider 4�4 Hermitian matrices acting
in the four-dimensional space of the zero-energy electronic
states. The basis in the 16-dimensional space of such matri-
ces is provided by the generators of the SU�4� group forming
a 16-dimensional reducible representation of C6v or C6v� . This
representation is reduced as

�E1 + E2�� �E1 + E2� = 2�A1 + A2 + B1 + B2 + E1 + E2�
�5�

within the group C6v �the two sectors corresponding to ma-
trices either diagonal or off diagonal in the KK� subspace� or
as

G�� G� = A1 + B1 + B2 + A2 + E1 + E2 + E1� + E2� + G�

�6�

within the group C6v� . The correspondence between Eqs. �5�
and �6� is given in Table III.

The most convenient way to identify the matrices is by
specifying the irreducible representation, according to which
they transform, rather by specifying their explicit form in
some particular basis. So the matrix which transforms ac-
cording to the A2 representation of C6v� will be denoted by �z
and called the z component of the isospin �the only arbitrari-
ness in this definition is the overall sign�. The two matrices
which transform according to the vector E1 representation of
C6v� will be denoted by ��x ,�y��� 	defined up to an arbi-
trary rotation, see Eq. �15a� below
 and so on. The full list of
definitions and notations is given in Table III.

Explicit expressions for the electronic matrices are not
needed as long as their algebraic rules are specified. The
simplest way to specify these rules is to express all the 16
matrices in terms of two sets, ��x ,�y ,�z� and ��x ,�y ,�z�,
and their products, where the matrices from the same set
satisfy the Pauli-matrix algebra, while matrices from differ-
ent sets just commute. In Appendix A we show how these
rules can be established and give the explicit expressions for
the matrices for some specific choices of the basis. We also
note that e�2�i/3��z is the matrix of the C3 rotation, �x�z of the
C2 rotation, �z�x of the �a� reflection, �y�y of the �a reflec-
tion, and e��2�i/3��z are the matrices of the two elementary
translations.

B. Electronic wave functions and Hamiltonian

Since there are two � orbitals per unit cell, the eigenfunc-
tions for each wave vector k in the Brillouin zone are given
by eikrUk,��r ,z�, where the two Bloch functions Uk,��r ,z�,

TABLE II. Irreducible representations of the group C6v� =C6v+ �ta1
C6v�+ �ta2

C6v� and their characters.

C6v� E ta1
, ta2

C2, ta1
C2,

ta2
C2 C3, C3

2
ta1

C3, ta1
C3

2,
ta2

C3, ta2
C3

2

C6, C6
5,

ta1
C6, ta1

C6
5,

ta2
C6, ta2

C6
5 �a,b,c� ta1

�a,b,c� , ta2
�a,b,c�

�a,b,c, ta1
�a,b,c,

ta2
�a,b,c

A1 1 1 1 1 1 1 1 1 1

A2 1 1 1 1 1 1 −1 −1 −1

B2 1 1 −1 1 1 −1 −1 −1 1

B1 1 1 −1 1 1 −1 1 1 −1

E1 2 2 −2 −1 −1 1 0 0 0

E2 2 2 2 −1 −1 −1 0 0 0

E1� 2 −1 0 2 −1 0 2 −1 0

E2� 2 −1 0 2 −1 0 −2 1 0

G� 4 −2 0 −2 1 0 0 0 0
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periodic in r= �x ,y�, are even and odd with respect to the
reflection �a� and are normalized as

� Uk,i
* �r,z�Uk,j�r,z�d2rdz = LxLy�ij, i, j = + ,− , �7�

where LxLy is the crystal area. It is more convenient to
choose their linear combinations localized near each carbon
atom: Uk,A= �Uk,++Uk,−� /�2 and Uk,B= �Uk,+−Uk,−� /�2. In
this basis an arbitrary wave function ��r ,z� involving only
low-energy states can be written in terms of a four-
component smooth envelope function ��r� or its Fourier
transform ��p�, pa�1, as

��r,z� =� d2p

�2��2 	�K,A�p�ei�K+p�rUK,A�r,z�

+ �K,B�p�ei�K+p�rUK,B�r,z�

+ �K�,A�p�ei�K�+p�rUK�,A�r,z�

+ �K�,B�p�ei�K�+p�rUK�,B�r,z�
 . �8�

The low-energy effective electronic Hamiltonian Hel�p� is
defined as a 4�4 matrix whose matrix element between any

two smooth envelope functions ��r� and �̃�r� coincides with
the matrix element of the microscopic Hamiltonian
Hel�−i� ,−i�z ;r ,z� including the periodic crystal potential
between the corresponding full wave functions ��r ,z� and

�̃�r ,z� �see Appendix B for details�,

� �†�r�Hel�− i � ��̃�r�d2r

=� �*�r,z�Hel�− i � ,− i�z;r,z��̃�r,z�d2rdz . �9�

Strictly speaking, the spin index should also be attached
to the enevlope function ��r�. However, it would make the
formulas more cumbersome, and we prefer to omit it, as
none of the calculations of the present paper will concern a
nontrivial spin structure. The only role of the spin will be to
provide an additional degeneracy, which will be accounted
for and mentioned separately every time it will enter the
calculations.

We expand the effective Hamiltonian in powers of p:
Hel�p�=H1�p�+H2�p�+¯, where Hn�p�=O�pn�. One can
write down different terms from symmetry considerations,
taking into account that momentum components px , py trans-

form according to E1 �vector� representation of C6v. The
leading term in the Hamiltonian, H1�p�, must have the Dirac
form,44

H1�p� = vpx�x + vpy�y � vp� . �10�

The coefficient v turns out to be equal to v�108 cm /s
�7 eV A; it can be related to the nearest-neighbor coupling
matrix element t of the tight-binding model as v=3ta /2. The
four eigenstates of Hamiltonian �10� for each p can be clas-
sified by the value ��1� of projection of the isospin � on p,
corresponding to the energies �v�p�. In other words, Hamil-
tonian �10� is diagonalized by a unitary transformation,

H1�p� = e−i�zp/2e−i�y�/4vp�ze
i�y�/4ei�zp/2, �11�

where p=arctan�py / px� is the polar angle of the vector p.
Various perturbations of the Dirac Hamiltonian �10�

should also be classified according to Table III. Only those
containing the matrix �z will open a gap in the electron
spectrum. Perturbations, not containing �i, correspond to an
energy shift of the whole spectrum �which may be accompa-
nied by valley mixing if �i matrices are involved�. Perturba-
tions, proportional to �, correspond to a momentum shift of
the Dirac points, which can be viewed as a gauge vector
potential.

The next term in the Hamiltonian can be written by taking
into account that the symmetric tensor pipj can be decom-
posed into p2, transforming according to A1, and 2pxpy , px

2

− py
2, transforming according to E2,

H2�p� = �0p21 + �3	− 2pxpy�y + �px
2 − py

2��x
�z. �12�

The first term describes electron-hole asymmetry; it vanishes
in the nearest-neighbor tight-binding model and appears only
if coupling to the second-nearest neighbors is included. The
second term, corresponding to E2 representation, is respon-
sible for the so-called trigonal band warping. In the nearest-
neighbor tight-binding model its value is given by −3ta2 /8.

At this point it is convenient to introduce the time-
reversal operation whose action on the microscopic spinless
wave function is defined by ��r���*�r�. For the four-
component envelope function ��r� this definition translates
into

��r��
T

UT�*�r� , �13�

where UT is a unitary 4�4 matrix, with an additional re-
quirement UTUT

*=1, whose explicit form depends on the

TABLE III. Classification of 4�4 Hermitian matrices and their transformation properties under time reversal T.

KK�-diagonal matrices KK�-off-diagonal matrices

C6v� irreps A1 B1 A2 B2 E1 E2 E1� E2� G�

C6v irreps A1 B1 A2 B2 E1 E2 A1 B1 A2 B2 E1 E2

Notation 1 �z �z �z�z �x ,�y −�z�y ,�z�x �x�z �y�z �x �y �x�y ,−�x�x �y�x ,�y�y

T � � � � � � � � � � � �
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choice of the basis. The action of time reversal on the effec-
tive electronic Hamiltonian is defined by

Hel�p,r��
T

UTHel
*�− p,r�UT

† . �14�

Behavior of electronic matrices under the time reversal is
listed in Table III.

Time-reversal symmetry of the Hamiltonian does not add
any new symmetries to the spectrum, as compared to those
imposed by the spatial symmetry C6v �namely, C3v symmetry
of the spectrum around each of K ,K� points and the mirror
symmetry between the spectra at K and K� points�, because
the action of the time reversal on the wave vector is identical
to that of the C2 rotation, K+p�K�−p. However, some
perturbations may lift the C2 symmetry while still preserving
the time-reversal one �see Secs. III E and III H�.

C. Additional symmetries of the Dirac Hamiltonian

Dirac Hamiltonian �10� has a higher symmetry than the
microscopic symmetry C6v. The additional symmetries are
�i� the full intravalley rotational symmetry C�v,

� � e−i�z/2�ei�z/2, �15a�

�px

py
� � �cos  − sin 

sin  cos 
��px

py
� , �15b�

which leaves H1�p� invariant and �ii� the chiral property,

UCH1UC = − H1, UC � �z, �16�

which ensures the symmetry of the spectrum with respect to
�→−� �i.e., particle-hole symmetry�.

The intravalley “time-reversal” symmetry, mentioned in
Ref. 45, can be represented as a combination of time reversal
�13�, intravalley rotation �15a� by �, and the C2 rotation,

�� �x�ze
−i�z�/2UT�* = − i�xUT�*. �17�

Applying this operation twice results in a minus sign, since
the matrix �x is odd under time reversal. If one wishes to
include the second-order Hamiltonian �12�, the A1 term pre-
serves only the rotational symmetry C�v, while the E2 term
preserves only chiral property �16�.

D. In-plane phonon modes

There is quite extensive literature dedicated to the phonon
modes of graphene and graphite and their symmetry analysis
�see, e.g., Ref. 2, and references therein�. To make the pre-
sentation self-contained, we briefly repeat the facts which are
necessary for the subsequent considerations.

The only phonons that can efficiently couple to the low-
energy electronic states are those near the � point �coupling
electronic states in the same valley� and near the K ,K� points
�coupling electronic states in different valleys; note that K
−K� is equivalent to K��. As a result, each unit cell has 4
in-plane degrees of freedom �two per each carbon atom�. At
� point one has two acoustic and two optical modes. Cou-
pling of the acoustical modes with a wave vector q to the
electron motion must vanish as q→0 and thus be small in

the parameter qa, but we consider them for the sake of com-
pleteness. For eight modes at K ,K� points it is more conve-
nient to consider their real linear combinations which trans-
form according to A1+B1+A2+B2+E1+E2 representations of
the group C6v. All 12 modes are shown in Fig. 5. They are
linearly polarized, in contrast to the basis with a definite
wave vector, which would have a circular polarization.

After having mixed the K and K� modes, it is natural to
switch to the tripled unit-cell representation. Analogous to
Eq. �8� for electrons, an arbitrary lattice displacement pat-
tern, involving phonon states with wave vectors close either
to �, K, or K� points, can be expressed in terms of a smooth
envelope function u�r� or its Fourier transform u�q�. Since
we have to specify two Cartesian components of displace-
ments for each of the six atoms in the tripled unit cell, �x�
= ��x1 ,�y1 , . . . ,�x6 ,�y6�T, the envelope of normal coordi-
nates u�q� is a 12-component vector,

1xE E2yE1y 2xE

1A B1

A2 B2

E1y1xE

2xE 2yE

KK

Γ vibrations:

vibrations:

FIG. 5. In-plane phonon modes at � point and real linear com-
binations of the phonon modes at K ,K� points corresponding to
different irreducible representations of C6v. The dashed lines show
tripled unit cells.
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�x��R� =� d2q

�2��2 �
�=1

12

u��q�eiqRX� q,�, �18�

where R spans a discrete set of points, labeling different unit
cells, and X� q,� is the pattern of displacements for the �th
normal mode, normalized as

X� −q,�
T X� q,�� = 6����. �19�

For q=0 the 12 normal modes X� q=0,� are shown in Fig. 5.
Introducing ���r�, the canonically conjugate momentum to
u��r�, we write the bare phonon Hamiltonian as

Hph = �
�=1

12 � Nd2r

LxLy
���2 �r�

2M
+

M

2
u��r���

2 �− i � �u��r�� ,

�20�

with M =1.993�10−23 g being the carbon atom mass, N the
total number of the carbon atoms in the crystal, and ���q�
the frequency of the �th normal mode.

At q=0 the modes belonging to the same irreducible rep-
resentation of C6v� are degenerate. Expansion of the phonon
potential energy at small q, describing the splitting, can be
done analogously to that of the electronic Hamiltonian. It is
convenient to preserve form �20� of the Hamiltonian, but
instead of summing over normal modes � one should sum
over irreducible representations of C6v� . For each irreducible
representation �2�−i� � becomes a matrix acting in the space
of the degenerate modes belonging to this representation.

For two-dimensional representations �E1 and E2 at the �
point and E1� ,E2� at K ,K� points� we have to classify 2�2
Hermitian matrices according to irreducible representations
in the corresponding decomposition,

E1� E1 = A1 + A2 + E2, �21a�

E2� E2 = A1 + A2 + E2, �21b�

E1�� E1� = A1 + A2 + E1�, �21c�

E2�� E2� = A1 + A2 + E2�. �21d�

The basis in the space of such matrices is provided by the
unit matrix �0 transforming according to A1, the Pauli matrix
�z transforming according to A2, and the Pauli matrices
�x ,�y transforming according to the third term in each de-
composition. Since the components qx ,qy transform accord-
ing to E1, the linear in q term is absent for all two-
dimensional representations. For the four-dimensional
representation G� we have to deal with 4�4 matrices, so
everything is fully analogous to the electronic case, and these
phonons also have Dirac spectrum. In the second order we
have q2�A1 and qx

2−qy
2 ,2qxqy �E2, so we can write

�E1

2 �q� =
vL

2 + vT
2

2
q2 +

vL
2 − vT

2

2
	�qx

2 − qy
2��x − 2qxqy�y
 ,

�22a�

�E2

2 �q� = �E2

2 + �E2
�JL + JT�q2

+ �E2
�JL − JT�	�qx

2 − qy
2��x − 2qxqy�y
 , �22b�

�E1�
2 �q� = �E1�

2 + 2�E1�
JE1�

q2, �22c�

�E2�
2 �q� = �E2�

2 + 2�E2�
JE2�

q2, �22d�

�G�
2 �q� = �G�

2 + 2�G�vG�q� + O�q2� . �22e�

The 2�2 matrices appearing in Eqs. �22a� and �22b� can be
diagonalized to yield the dispersion of the longitudinal and
transverse phonons: �E1,L�T��q�=vL�T�q and �E2,L�T��q�=�E2
+JL�T�q

2.

E. Electronic coupling to in-plane optical phonons

In the electron-phonon interaction Hamiltonian the
normal-mode displacements should be paired with the elec-
tronic matrices, corresponding to the same irreducible repre-
sentation. For optical phonons it is sufficient to take the lead-
ing q=0 term, so we have one independent coupling constant
for each irreducible representation of the group C6v� ,

He-opt = F�	uE2
��z�
z + FK�uA1

�x�z + uB1
�y�z�

+ FK� �	uE1
��x�
z + uE2

�y�� . �23�

Note that E2� phonons cannot couple to the electron motion in
this approximation since the corresponding matrices �x ,�y
change sign under the time reversal, while the electronic
Hamiltonian must preserve time-reversal symmetry even in
the crystal with displaced atoms. Electrons will couple to �i�
momentum �E2�

, whose effect is small in the ratio of the
phonon frequency �E2�

to the electron bandwidth, �ii� gradi-
ent �uE2�

, whose effect is small in the parameter qa, and �iii�
the squares of displacements uE2�

2 , whose effect is small in the

parameter 1 / �Ma2�E2�
�.

The three constants in Eq. �23� can be evaluated in the
tight-binding approximation, where they are expressed in
terms of F��t /�a�6 eV /A—the change in the nearest-
neighbor coupling matrix element with the distance between
the atoms. We obtain F�=FK=3F, while FK� vanishes. This
vanishing is an artifact of the nearest-neighbor bond-
stretching approximation. If one takes into account the de-
pendence of the electronic Hamiltonian on the angles be-
tween the bonds, FK� becomes different from zero.
Nevertheless, it is an order of magnitude smaller than FK
�e.g., density-functional theory calculations31 give FK� /FK
�0.13�, and we neglect the G� phonons for the rest of the
paper. Thus, our attention will be focused on the two degen-
erate modes E2 and E1�, which will be referred to simply as �
and K phonons, and their frequencies will be denoted by
�E2,L�q�=��,L�q�, �E2,T�q�=��,T�q�, and �E1�

�q�=�K�q�.
The strength of electron-phonon interaction can be conve-

niently characterized by the dimensionless coupling con-
stants
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�� =
F�

2

M���0�v2

�27a2

4
, �K =

FK
2

M�K�0�v2

�27a2

4
, �24�

where �27a2 /4 is the area per carbon atom. For F�=FK

=3F, F=6 eV /Å, M =2.00�10−23 g=2.88�103 �eV Å2�−1,
v=106 m /s=6.58 eV Å, ��=1580 cm−1=0.196 eV, �K
=1370 cm−1=0.170 eV, and a=1.42 Å, we have

F�
2

M��v
2

�27a2

4
� 0.035,

FK
2

M�Kv2

�27a2

4
� 0.040.

�25�

The easiest way to match the notations for the electron-
phonon coupling constants, used in the present paper to those
used in other works, is to compare observable quantities. For
example, adding electrons to the system leads to a shift of
the phonon frequencies. For the � phonons at q=0 in the
present notations this shift is expressed in terms of the Fermi
energy �F as

��� =
��

2�
���F� +

��
4

ln
�� − 2��F�
�� − 2��F�� . �26�

Alternatively, one can look at the correction to the phonon
dispersion as a function of the wave vector q �see Appendix
E�.

F. Electronic coupling to in-plane acoustical phonons

Since a uniform translation of the crystal cannot affect the
electron motion, it can couple to acoustic phonons only
through spatial and time derivatives of the corresponding
displacements,

He-ac =
�E1

M
�p + mev�� +�0��xuE1x + �yuE1y�1

+�1��xuE1y − �yuE1x��z

+�2	− ��xuE1y + �yuE1x��y + ��xuE1x − �yuE1y��x
�z.

�27�

The general form of the coupling to �E1
in the first line

follows from the symmetry considerations �the coefficient at
�E1

should transform according to E1 and change sign under
time reversal�. However, its exact form follows from the k ·p
perturbation theory �which identifies me with the free-
electron mass� in combination with the requirement of Gal-
ilean invariance; if ��r , t� satisfied the Schrödinger equation
for the stationary lattice, then for the lattice moving at a
constant velocity u̇E1

=�E1
/M, the solution should be ��r

− u̇E1
t , t� �we neglect the contribution of electrons to the total

kinetic energy of the crystal�. Coupling to the strain is writ-
ten using the decomposition E1�E1=A1+A2+E2.

G. Out-of-plane phonons

The basis vectors for out-of-plane displacements coincide
with those for the electronic wave-function amplitudes in the
tight-binding picture �since in both cases single number is

associated with each lattice site�. At the � point the basis
vectors represent A and B atoms shifting in the same direc-
tion or opposite directions, corresponding to A1 and B2 rep-
resentations. For the K, K� phonons we have E1+E2 repre-
sentations of C6v or the four-dimensional G� representation
of C6v� in the tripled unit-cell picture. All six modes are
shown in Fig. 6.

For a suspended graphene sheet the A1 mode has a fre-
quency �A1

�q��q2 �see, e.g., Ref. 46�. The frequencies of
other modes are finite. All frequencies can be strongly af-
fected by the interaction with the substrate �in particular,
there will be no reason for the frequency of the A1 mode to
vanish at q=0�.

Out-of-plane displacements can couple to the electron
motion only quadratically if the crystal is symmetric with
respect to reflection in the crystal plane. While it is the case
for a suspended graphene sheet, presence of a substrate may
break this symmetry.47

H. Coupling to electromagnetic field

The Hamiltonian of interaction of electrons with the elec-
tromagnetic field, described by the long-wavelength scalar
and vector potentials �r� and A�r�, can be obtained from
the requirement of gauge invariance: Hel�p�→Hel	p
− �e /c�A
+e. To the linear order in A we have

He-em = e −
ev
c

A� . �28�

Besides coupling via gauge potentials, electrons can
couple directly to electric and magnetic fields. Such terms
are gauge invariant and cannot be deduced from the bare
electronic Hamiltonian in the envelope function approxima-
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FIG. 6. Out-of-plane phonon modes at � point and real linear
combinations of the phonon modes at K, K� points corresponding to
different irreducible representations of C6v.
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tion, as they correspond to the effect of electromagnetic field
on the microscopic Bloch functions. They should be intro-
duced into the effective low-energy theory directly, and can
be either calculated microscopically �see Appendix B for the
calculation by k ·p perturbation theory� or written from sym-
metry considerations.

The electric-field vector is invariant under time reversal,
and its Cartesian components Ex, Ey, Ez transform according
to Ez�A1, �Ex ,Ey��E1 under C6v. The magnetic-field vector
changes sign under time reversal, and its components Bx, By,
Bz transform as Bz�A2, �−By ,Bx��E1 under C6v. They can
couple only to valley-diagonal matrices. Indeed, for uniform
electric and magnetic fields the effective Hamiltonian must
be invariant under translations, represented by the matrices
e��2�i/3��z. This requirement is not satisfied by any matrix of
the form �i�x, �i�y, i=0,x ,y ,z. In particular, the term pro-
portional to Bx�x�x+By�x�y, considered in Ref. 48, must be
absent �see Appendix B for a microscopic calculation�.

These considerations enable us to write the Hamiltonian
to the first order in the fields as

He-em� = − dzEz1 + �xy�Bx�y − By�x� − �zBz�z. �29�

The first term in this Hamiltonian represents the coupling to
the z component of electric-dipole moment of � electrons in
each unit cell. The second term represents the coupling of the
magnetic field to the in-plane component of the magnetic
moment. These terms are forbidden for a suspended
graphene sheet due to the symmetry with respect to reflection
in the crystal plane but may be allowed if this symmetry is
broken due to the presence of a substrate. On the contrary,
the third term, corresponding to the z component of the mag-
netic moment of the unit cell, is allowed for a suspended
graphene sheet as well �the z-component of the magnetic
moment does not change sign under reflection in the crystal
plane�.

Terms quadratic in E and B correspond to polarizabilities
of the unit cell. The corresponding Hamiltonian can be writ-
ten following the same lines as above. This is, however, be-
yond the scope of our interest.

IV. RAMAN SCATTERING: GENERAL EXPRESSIONS

In this section we derive the general expressions for the
Raman-scattering probability using the standard perturbation
theory.

A. Green’s functions

The second-quantized version of Dirac Hamiltonian �10�
reads as

Ĥ1 =� d2r�̂†�r��− iv� · ���̂�r� . �30�

Since all energies we are interested in ��1 eV� are much
higher than temperature, we set the latter equal to zero. The
zero-temperature electronic Green’s function, corresponding
to Hamiltonian �30�, is given by

G�p,�� = − i� �T�̂�r,t��̂†�0,0��e−ipr+i�td2rdt

=
� + vp · �

�2 − �vp − io�2 , �31�

where io is the infinitesimal imaginary shift of the pole. T is
the sign of the chronological ordering and the average is
taken over the ground state of the system.

Upon quantization of the phonon field based on Hamil-
tonian �20�, the normal-mode displacement operator and the
bare phonon Hamiltonian become

û��r� = �
q

b̂q,�eiqr + b̂q,�
† e−iqr

�2NM���q�
, �32a�

Ĥph = �
q,�
�q,��b̂q,�

† b̂q,� +
1

2
� , �32b�

�
q

� LxLy� d2q

�2��2 . �32c�

The phonon Green’s function is defined as

D��q,�� = − i
2NM���q�

LxLy
� �Tû��r,t�û��0,0��e−iqr+i�td2rdt

=
2���q�

�2 − 	���q� − io
2 . �33�

This definition implies that each electron-phonon vertex cor-
responding to the second-quantized version of the interaction
Hamiltonian �23� contains, besides the coupling constant F�
and the corresponding electronic matrix �i� j = �����, a fac-
tor �LxLy / 	2NM���q�
. Thus, the overall factor appearing in
each vertex at small q is just v��� /2, where �� is the di-
mensionless coupling constant defined in Eq. �24�. The factor
LxLy /N=�27a2 /4 is the area per one carbon atom.

Upon quantization of the electromagnetic field the opera-
tor of the vector potential is expressed in terms of creation
and annihilation operators âQ,�

† , âQ,� of three-dimensional
photons in the quantization volume V=LxLyLz with the wave
vector Q and two transverse polarizations �=1,2 with unit
vectors eQ,�,

Â�r� = �
Q,�

�2�c

VQ
�eQ,�âQ,�eiQr + eQ,�

* âQ,�
† e−iQr� . �34�

The photon propagator is defined analogously to the phonon
one,

���Q,�� = − i
Q

2�c
� �TÂ��r,t�Â��0,0��e−iQr+i�td2rdt

=
2cQ

�2 − 	cQ − io
2 , �35�

so that each electron-photon vertex corresponding to the
second-quantized version of the interaction Hamiltonian �28�
contains the factor e�v /c�, playing the role of the coupling
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constant, the electronic matrix �eQ,� ·��, and a factor
�2�c /Q.

Let us diagonalize each of the two electronic Green’s
functions, entering and leaving the electron-photon vertex,
by transformation �11�. Then, neglecting the change in the
electronic momentum p upon emission of the photon, we
transform the electronic matrix in the vertex as

ei�zpi/2ei�y�/4�eQ,� · ��e−i�zp/2e−i�y�/4

=
�p · eQ,��

�p�
�z +

	p� eQ,�
z

�p�
�y , �36�

where p is the polar angle of the wave vector p. Since we
are interested in the interband transition, we need the �y part
of this expression, which tells us that the transition dipole
moment is perpendicular to the electron momentum. The
graphical representation of Green’s functions and vertices,
introduced in this section, is shown in Fig. 7.

B. Raman-scattering probability

Formally, n-phonon Raman scattering is a quantum-
mechanical transition from the initial state with the crystal in
the ground state and one incoming photon with the wave
vector Qin, frequency �in=c�Qin�, and polarization ein into
the final state with one outgoing photon with the wave vector
Qout, frequency �out=c�Qout�, polarization eout, and n
phonons corresponding to normal modes �1 , . . . ,�n with
wave vectors q1 , . . . ,qn. Denoting the ground state of the
system by �vac�, we represent these two states as âin

† �vac� and

âout
† b̂�1q1

†
¯ b̂�nqn

† �vac�. Let us introduce the S-matrix Ŝ���
and define the amplitude of the n-phonon Raman scattering
as

Aq1¯qn

�1¯�n��;��i�i=1
i=n�

=� �Tâout�t�b̂�1q1
�t1� ¯ b̂�nqn

�tn�Ŝ���âin
† �0��

�Ŝ����

�ei�tdt�
i=1

n

ei�itidti. �37�

Here the operators are taken in the interaction representation
and T represents the chronological ordering.

The diagrammatic representation of amplitude �37� in the
leading order in electron-photon and electron-phonon cou-
plings is shown in Figs. 8 and 9 for n=1 and n=2, respec-
tively. The incoming photon line corresponds to pairing of
the operator âin

† and the outgoing lines to pairings of the

operators âout, b̂�i,qi
. The loop represents the intermediate

states of the electron-hole pair; summation over the momen-
tum circulating in the loop and integration over energy
should be performed.

Let us separate Green’s functions of the scattering par-
ticles 	only the positive-frequency parts of Green’s functions
enter, as shown by the ��� superscripts
, the momentum-
conserving � function, and explicitly introduce the permuta-
tions P of the phonon indices,

Aq1¯qn

�1¯�n��;��i�i=1
i=n�

=
i

�V
�in

�+��Qin,� + �
i=1

n

�i� i
�V
�out

�+��Qout,��

��
j=1

n
i

�LxLy

D�j

�+��q j,� j��2��2���
i=1

n

qi + Qout − Qin�
��

P
�− i�MP�qi�

P��i���;P��i�� . �38�

Then −iM is given by the sum of all topologically inequiva-
lent diagrams with amputated external lines. Equivalently, in
the leading order �P�−i�MP is given by the sum of all �n
+1�! connected pairings of electronic � operators while

= iG(p, ε)p, ε

p, ε

ε + ω
p + q µ,q, ω = −i

√√√√√√√√√

LxLy

2NMωµ(q)
Fµ(ΛΣ)µ

µ,q, ω = iDµ(q, ω)
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ωout
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p + Qout

= i

√√√√√√√√√
2πe2

V ωout
(e∗out · vΣ)
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ε + ωin
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ωin

= i

√√√√√√√√√
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�,Q, Ω
= iΥ�(Q, Ω)

FIG. 7. Graphical representation of electron, phonon, and pho-
ton Green’s functions and vertices.

(a) (b)

FIG. 8. Diagrams for the one-phonon Raman amplitude in the
leading order.

(a)

(c)(b)

FIG. 9. Diagrams for the two-phonon Raman amplitude in the
leading order.
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electron-photon and electron-phonon vertices are held fixed.
The transition probability per unit time is given by

lim
t→+�

1

t
�� Aq1¯qn

�1¯�n��;��i�i=1
i=n�e−i�td�

2��
i=1

n

e−i�it
d�i

2�
�2

=
1

V2�LxLy�n2����
i=1

n

�qi
+ �out − �in�

���2��2���
i=1

n

qi + Qout − Qin��2

���
P

MP�qi�
P��i���out;P��qi

���2
, �39�

where we used the relation

lim
t→+�

1

t
� eizt − 1

z
�2

= 2���z� . �40�

The absolute dimensionless probability for the incoming
photon to scatter with emission of n phonons of any kind is
obtained by summing over all final states �here one should
remember that a permutation of phonon arguments repre-
sents the same state� and multiplying by the photon attempt
period Lz /c �at this point we also recall about the electron
spin and multiply the matrix element by a factor of 2 which
appears after tracing the Fermion loop with respect to spin
indices�,

In =
1

V2

Lz

c
�

Qout,�out

1

�LxLy�n

1

n!

� �
��i,qi�

2����
i=1

n

��i
�qi� + c�Qout� − c�Qin��

���2��2���
i=1

n

qi + Qout − Qin��2

�2M�qi�
��i��2. �41�

The square of the momentum � function is taken care of by
the relation �2��2��q=0�=LxLy, consistent with Eq. �32c�.
We can also pass to the spectrally resolved probability by
inserting 1=�d�out���out−c�Qout��,

dIn

d�out
=

1

c
�
�out

� d3Qout

�2��3 ��c�Qout� − �out�
1

�LxLy�n−1

1

n!

��
��i�

�
q1+¯+qn=0

2����
i=1

n

��i
�qi� + �out − �in�

��2M�qi�
��i��2. �42�

At first glance, the matrix element M�qi�
��i� does not seem to

depend on the outgoing photon wave vector Qout, since the
latter is negligible in comparison with electron and phonon
momenta contributing to M�qi�

��i�, so the integration over the

photon wave vectors gives just �out
2 / �2�2c3�. However,

M�qi�
��i� depends on the orientation of the polarization vector

eout, which, in turn, depends on the direction of Qout. Thus,
we should consider the differential probability of emission
into the elementary solid angle doout=sin�d�d , where the
spherical angles �� 	0,�
 and  � 	0,2�
 parametrize the
direction of Qout. For this differential probability we can
write

4�
dIn

doout
=

2�

c

�out
2

2�2c3

1

�LxLy�n−1

1

n! ���i�
�

q1+¯+qn=0
�2M�qi�

��i��2

= In
��ein · e

in
* ��eout · e

out
* � + �In

 − In
��

�
�ein · eout��ein

* · e
out
* � + �ein · e

out
* ��e

in
* · eout�

2
.

�43�

We stress that only the in-plane components of the polariza-
tion vectors participate in these scalar products. In writing
Eq. �43� we have assumed the crystal itself to be isotropic,
which is true as long as the calculation is done for the Dirac
spectrum. As soon as the trigonal warping term in Eq. �12� is
taken into account, the orientation of the polarization vectors
with respect to the crystal directions will enter. The correc-
tions due to the trigonal warping will be analyzed in Sec.
VI B and will be shown to be small.

For each direction of Qout we can choose the basis of s
and p polarizations,

es = �− sin ,cos ,0� ,

ep = �− cos� cos ,− cos� sin ,sin�� . �44�

Suppose the light coming out from the sample is collected by
a lens within a cone with the aperture 2�det. Upon passing
through the lens the polarization vectors change into

es → �− sin ,cos ,0�, ep → �− cos ,− sin ,0� ,

�45�

so a linearly polarized detector oriented at an angle  det will
detect only those photons whose polarization before the lens
was

e = es sin� − det� + ep cos� − det� . �46�

Averaging over the directions gives
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In = �
0

�det sin�d�

2
�

0

2� d 

2�
e

ie
j�In

��ein · e
in
* ��ij + �In

 − In
��

ein
i �ein

j �* + �ein
i �*ein

j

2
�

= �
0

�det sin�d�

16
	�ij�1 − cos��2 + 2edet

i edet
j �1 + cos��2
�In

��ein · e
in
* ��ij + �In

 − In
��

ein
i �ein

j �* + �ein
i �*ein

j

2
�

=
1

48
��In

 + In
���1 − cos�det�3 + 2In

�	8 − �1 + cos�det�3
��ein · e
in
* � +

1

24
�In

 − In
��	8 − �1 + cos�det�3
��ein · edet��2, �47�

where edet= �cos det , sin det ,0�. Unpolarized detection cor-
responds to adding the contributions from two mutually per-
pendicular polarizations edet and results in

In =
4 − 3 cos�det − cos3�det

12
�In

 + In
���ein · e

in
* � . �48�

C. Inelastic broadening

As discussed in Sec. I A, when the number of emitted
phonons is even, energy and momentum conservation can be
satisfied in all elementary processes, represented by vertices
on the diagrams for the Raman amplitude. As a consequence,
the energy denominators of all electronic Green’s functions
forming the electron-hole loop can be nullified simulta-
neously, and the integral over the internal momentum and
energy diverges. To cure this divergence it is essential to
include broadening of the electronic states. In other words,
the infinitesimal imaginary part −io in the denominator of
Green’s function �31� should be replaced by the actual broad-
ening −i�p= i Im ��p ,vp�, where ��p ,�� is the electronic
self-energy �the effect of Re � will be studied in Sec. VIII�.

Im ��p ,vp� corresponds to emission of some excitations
by the electron �hole�. One obvious candidate is the phonon
itself; the corresponding contribution to ��p ,�� is repre-
sented by the first term in Fig. 10. Besides phonons, an elec-
tron can emit other kinds of excitations; the most important
contribution can be expected to come from emission of
electron-hole pairs. Emission of electron-hole pairs in the
undoped graphene must be impurity assisted,24 while in the
doped case electrons can collide without impurities involved,
so the electron-electron collision rate strongly depends on
doping. The propagator of electron-hole pairs is represented
in Fig. 10 by the wiggly line. We do not need the explicit
form of the propagator, being interested only in the contribu-
tion to Im �, introduced phenomenologically in the denomi-
nator of G�p ,��. The only property which is crucial for our
consideration is that the spectrum of electron-hole pairs at

each fixed wave vector is very broad as compared to Raman
peak widths as well as to �p.

The phonon contribution to ��p ,�� �the first term in Fig.
10� can be calculated explicitly.49 Let us do it for the case of
E2 phonons,

− i���p,�� = F�
2 � d��

2�

d2p�

�2��2

�27a2

4

D��p − p�,� − ���
2M���p − p��

� 	�x�zG�p�,����x�z + �y�zG�p�,����y�z
 .

�49�

The two terms in the square brackets correspond to two-
phonon polarizations. Integrating over �� and neglecting the
phonon dispersion, we obtain

���p,�� =
F�

2

M��v
2

�27a2

4

�

2�
�

0

!max !�d!�

�2 − �!� + �� − io�2

= ����� − �

4�
ln

!max

�� − �
− ��→ − ��� , �50�

where !max is an ultraviolet cutoff of the order of the elec-
tronic bandwidth. If we consider scattering on E1� phonons
�A1 representation of C3v in the K point�, we obtain the same
expression as Eq. �50� but with F� and �� replaced by FK
and �K. The dimensionless coupling constants �� and �K are
defined in Eq. �24�.

To conclude this section, we note that Raman-scattering
rate can be viewed as the imaginary part of the incoming
photon self-energy; indeed, any diagram for the Raman ma-
trix element, e.g., the first one in Fig. 9, can be obtained by
cutting a photon self-energy diagram in to two, as shown in
Fig. 11. Dressing electronic Green’s function with self-
energy corrections corresponds to going to higher orders of
perturbation theory and taking into account diagrams of the

+−iΣ(p, ε) =

FIG. 10. Electron self-energy due to the interactions with
phonons and with electron-hole pairs. The propagator of electron-
hole pairs is shown by the wiggly line; its explicit form is not
important for our calculation.

FIG. 11. Raman-scattering rate as the imaginary part of the pho-
ton self-energy: diagram �a� in Fig. 9 for the Raman matrix element
is obtained by cutting the photon self-energy diagram in to two, as
shown by the vertical short-dashed line.
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type shown in Fig. 12. One may ask what other diagrams
may appear in the higher orders of perturbation theory and
how important they are.

�i� Diagrams where the two electronic loops are connected
with more phonon lines �Fig. 13� describe Raman scattering
on the corresponding number of phonons. If the loops are
connected with an electron-hole propagator, this corresponds
to the contribution of electron-hole pairs to the Raman spec-
trum. As discussed in Sec. I A, the resulting spectrum is
broad and featureless, so we are not interested in these pro-
cesses. �ii� One can also insert phonon and electron-hole
propagators as shown in Fig. 14. Such diagrams represent
vertex corrections; their effect is analyzed in Sec. VIII. �iii�
All diagrams involving more electron-photon vertices have
an extra smallness in the parameter e2 /c�1 /137 and are
neglected. �iv� Inserting electronic loops into phonon propa-
gators describes the phonon frequency shift due to electron-
electron interaction and phonon decay into the continuum of
electron-hole pairs. They have been studied before, both
theoretically31,50–52 and experimentally.9,10,33,53 However,
shift and broadening of the phonon states are not important
for our calculation, as we are interested in the frequency-
integrated intensities of the Raman peaks. They are deter-
mined by the total phonon spectral weight, which is not
changed by shift and broadening.

V. ONE-PHONON RAMAN SCATTERING (REF. 42)

Since the photon wave vector is negligibly small com-
pared to all other scales in the problem, the in-plane momen-
tum conservation requires the emitted phonon to belong to
the � point. This fact explains the small width of the peak at
1580 cm−1. The matrix element for the one-phonon process
is given by two diagrams in Fig. 8,

Mx,y =
2�e2v2

i��in�out

� LxLyF�
2

2NM���0� � d�

2�

d2p

�2��2

� Tr
4�4

��ein��G�p,�− − ���Tx,yG�p,�−��e
out
* ��G�p,�+�

+ G�p,�−��e
out
* ��G�p,�+�Tx,yG�p,�+ + ����ein��� ,

�51�

where we denoted Tx=�z�y, Ty =−�z�x, ������out /2,
and ������q=0�.

At first glance, elementary power counting �we set �
�vp and note that each Green’s function G�1 /�� tells us
that the integral is logarithmically divergent at high energies.
However, let us recall the continuous symmetry 	Eqs. �15a�
and �15b�
 of Dirac Hamiltonian �10�. Rotation �15b� of the
dummy integration variable p by an arbitrary fixed angle 
cannot change the value of the integral. Thus, the integral
must not change if each Green’s function is replaced by G
→e−i�z/2Gei�z/2. Application of these e�i�z/2 to the verti-
ces is equivalent to inverse rotation �15b� of the polarization
vectors ein ,e

out
* and of the matrices �x ,�y. This gives us a

cubic combination of sin  , cos  which has no
-independent terms. This may be viewed as conservation of
the z component of the angular momentum: indeed, transfor-
mation properties under rotations C�v for both the photon
polarization vectors ein ,eout and the E2 phonon displacements
uE2x ,uE2y correspond to the angular momentum m=�1. As a
result, for the Dirac spectrum the one-phonon matrix element
�51� must vanish.

In fact, Eq. �51� gives zero even prior to the p integration.
We just notice that

− i�xG�p,��i�x = G�p,�� , �52a�

− i�x�i�x = � , �52b�

− i�x��z��i�x = − �z� . �52c�

The matrix −i�x is the combination of the matrix �x�z �the
full C2 rotation� and e−i�z�/2 �rotation by � within each val-
ley�. This symmetry relates the spectra at the points K+p
and K�+p.

As a consequence, in order to describe the one-phonon
Raman peak at 1580 cm−1, one has to go beyond the leading
order in the small-p expansion of the Hamiltonian 	i.e., to
take into account H2 from Eq. �12�
 and interaction vertices.
Since �x symmetry �52a� is broken by the second term of the
Hamiltonian H2�p� 	Eq. �12�
, the result will be different
from zero already at the next order in p. Then an additional
power of p appears in the integrand of Eq. �51�, so the di-
vergence at the upper limit becomes linear rather than loga-
rithmic. This means that the small-p expansion is inappli-
cable �i.e., all of its terms give the contribution of the same
order�, and the whole Brillouin zone is responsible for the
1580 cm−1 peak. We stress that this statement is valid in the
clean limit when impurity scattering can be neglected. Impu-
rity scattering can allow the one-phonon process in the lead-
ing order and make the integral convergent in the upper
limit.2 In the clean limit the proper tool for the calculation is

FIG. 12. A diagram corresponding to self-energy insertions in
electronic Green’s functions.

FIG. 13. A diagram describing emission of extra excitations.

FIG. 14. A diagram representing vertex corrections.
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thus not the effective low-energy electronic theory but the ab
initio band-structure methods, which are, of course, beyond
the scope of the present work. For low photon energies we
are interested in, we can simply add a term to the system
Hamiltonian, corresponding to a direct photon-phonon inter-
action. The form of this Hamiltonian is fixed by the C6v
symmetry �E1�E1�E2 contains only one A1 representa-
tion�,

Hem-ph =
e2

vR
� d2r	�Ex

2 − Ey
2�uE2x + 2ExEyuE2y
 , �53�

where Ex ,Ey are the in-plane Cartesian components of the
electric-field vector E=−�1 /c��A /�t, e is the electron charge,
and vR is the unknown constant of the dimensionality of
velocity. Since it originates from the electronic � band, its
magnitude is roughly given by the product of the electronic
bandwidth and the lattice constant, i.e., it should be of the
same order as the electronic velocity v.

This Hamiltonian leads to the following expression for the
one-phonon Raman matrix element:

�Mx

My� =
2e2

vR

2���in�out

�2NM���0�/�LxLy�
�ein,xeout,x

* − ein,yeout,y
*

ein,xeout,y
* + ein,yeout,x

* .
�

�54�

The resulting intensity does not depend on the polarization of
the detector. The sum over the two polarizations, calculated
according to the prescription of Sec. IV B, is given by

I� = 8�� e2

c
�2�in�out

3

vR
2c2

�27a2

4M���0�

�
4 − 3 cos�det − cos3�det

6
�ein · e

in
* � . �55�

Furthermore, Eqs. �52a�–�52c� lead to vanishing of the
Raman amplitude for any odd number of � phonons. This
property resembles Furry’s theorem in the spinor quantum
electrodynamics.54 There is, however, a difference: Furry’s
theorem holds for the sum of two diagrams containing an
odd number of photon lines and differing by the direction of
the electronic loop which cancel each other, while in Eq. �51�
each of the two terms vanishes separately. We also note that
K phonons can be emitted only in pairs; the excited electron-
hole pair should switch valleys an even number of times in
order to annihilate.55 The difference from the one-phonon
process is that the integral in the matrix element converges at
large k even after the next term in the small-k expansion has
been picked up. Thus, the three-phonon process can be de-
scribed within the low-energy theory, but the corresponding
amplitude will contain an additional smallness ��ina /c.

VI. TWO-PHONON RAMAN SCATTERING

A. Calculation for the Dirac spectrum

First, let us focus on the 2K peak at 2700 cm−1, which
corresponds to emission of two scalar phonons �A1 in terms
of the C3v symmetry or E1� in terms of the C6v� symmetry�

from the vicinity of the K and K� points. The integrated
intensity of the 2K peak is given by

4�
dI2K

doout
=

2�

c2

�out
2

2�2c2

1

2
· 2� d2q

�2��2 �2Mq
K�2. �56�

The factor 1 /2 in front of the sum eliminates double count-
ing in the summation over the final states �phonon permuta-
tions�, the factor of 2 comes from the sum over A1 and B1
modes �no cross terms arise, as they would yield a traceless
combination �x�y�, and the factor of 2 inside the square
takes care of the spin degeneracy.

The diagrams for the two-phonon matrix element are
shown in Fig. 9. Only the first diagram corresponds to the
fully resonant process, described in Sec. I A; the other two
give a contribution, smaller by a factor � /�K. Thus, the ma-
trix element is given by

Mq
K =

2�e2v2

��in�out

LxLyFK
2

2NM�K�q� � d�

2�

d2p

�2��2

� Tr
4�4

��ein · ��G�p,�−��x�zG�p + q,�−��

� �e
out
* · ��G�p + q,�+���x�zG�p,�+�� + �q → − q� ,

�57�

where ��=���in /2, ��� =���out /2. We diagonalize
Green’s functions by unitary transformation �11� and neglect
the off-resonant contribution,

G�p,��� = Up
† �� + �z!p

��
2 − !p

2 Up � Up
† �1��z�/2
�� " !p

Up, �58�

where !p�v�p�− i�p, Up=ei�y�/4ei�zp/2, and p
=arctan�py / px� is the polar angle of the vector p. The unitary
matrices rotate the vertices as

Up�xUp�
† = �z cos

p + p�

2
− �y sin

p + p�

2
, �59a�

Up�yUp�
† = �z sin

p + p�

2
+ �y cos

p + p�

2
, �59b�

Up�zUp�
† = i1 sin

p − p�

2
− �x cos

p − p�

2
, �59c�

Up�ein · ��Up
† = �ep · ein��z + 	ep� ein
z�y , �59d�

where ep=p / �p�. We are interested in the �y term in Eq.
�59d�, which corresponds to interband transitions and also
tells us that the transition dipole moment is perpendicular to
the electron momentum. In Eq. �59c�, the rotated phonon
vertex, we need the intraband term �1. Evaluation of the
trace gives

2
	ep� ein
z	ep+q� e

out
* 
z sin2�p+q/2 − p/2�

��− + !p���−� + !p+q���+� − !p+q���+ − !p�
. �60�

We can rewrite each of the factors in the denominator of this
expression as
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1

� − �in/2 + !p
= i�

0

�

dt̄0e−i�t̄0+i��in/2−!p�t̄0,

1

� − �out/2 + !p+q
= i�

0

�

dt̄1e−i�t̄1+i��out/2−!p+q�t̄1,

1

� + �in/2 − !p
=

1

i
�

0

�

dt0ei�t0+i��in/2−!p�t0,

1

� + �out/2 − !p+q
=

1

i
�

0

�

dt1ei�t1+i��out/2−!p+q�t1. �61�

Integration over d� / �2�� produces ��t0+ t1− t̄0− t̄1�. Thus the
times t0 , t1 and t̄0 , t̄1 can be interpreted as times spend in the
corresponding intermediate states by the electron and the
hole, respectively.

Let us denote p0=�in / �2v�, p1=�out / �2v�, and q̃=q− p0
− p1, and let p̃ , p̃� be the components of the deviation p̃
=p+ p0eq along q and perpendicular to q, respectively. We
expect the deviations to be small, so we approximate

Re !p = v��− p0 + p̃�2 + p̃�
2 � vp0 − vp̃ +

vp̃�
2

2p0
, �62a�

Re !p+q = v��p1 + p̃ + q̃�2 + p̃�
2 � vp1 + vp̃ + vq̃ +

vp̃�
2

2p1
,

�62b�

and ep�−eq, ep+q�eq, and p+q /2−p /2�� /2. Integration
over momentum deviation p̃ is performed as �we denote
�p0

+�p0+q=2� for brevity�

�
0

�

dt0dt1dt̄0dt̄1��t0 + t1 − t̄0 − t̄1�e−ivq̃�t1+t̄1�

��
−�

� dp̃

2�
eivp̃�t0+t̄0−t1−t̄1��

−�

� dp̃�

2�

�e−	�p0
+ivp̃�

2 /�2p0�
�t0+t̄0�−	�p0+q+ivp̃�
2 /�2p1�
�t1+t̄1�

= −
1

8v2� �in�out

�in + �out

1

�vq̃ − 2i��3/2 , �63�

which gives the matrix element

Mq
K =

2�e2v2

��in + �out

LxLyFK
2

2NM�K�q�
1

8v2

2	eq� ein
z	eq� e
out
* 
z

�vq̃ − 2i��3/2

+ �q → − q� . �64�

This expression describes a strongly peaked q dependence of
the matrix element M�q� around the value qbs= ��in
+�out� / �2v�, corresponding to backscattering of the electron
and the hole by the phonons. The width of the peak is deter-
mined by the electron lifetime: �q�� /v. Such sharply
peaked dependence cannot be derived from pure symmetry
considerations, which just prescribe vanishing of the phonon
matrix element for the forward scattering.2 It is a conse-

quence of the fully resonant character of the two-phonon
Raman scattering, which should be contrasted to the double-
resonant impurity-assisted single-phonon scattering. For the
latter case, the scale determining the width of the peak is
�q��in /v 	see Eq. �2� of Ref. 56
.

The origin of such peaked dependence lies in the quasi-
classical nature of the electron and hole motion. Namely, the
incoming photon creates an electron with momentum p0,
moving with the velocity v0= �� Re !p /�p�p=p0

, and a hole
with momentum −p0, moving with the velocity −v0. After a
time t0 the electron emits a phonon of momentum −q and
after a time t̄0 the hole emits a phonon of momentum q.
Afterward, at time t0+ t1= t̄0+ t̄1 they recombine and emit a
photon. In order to recombine, they must meet at the same
spatial point �as prescribed by the spatial � function resulting
from the integration over the deviations p̃� with opposite
momenta p1=p0+q and −p1 �as prescribed by the momen-
tum conservation�. It is possible only if the velocity v1
= �� Re !p /�p�p=p1

is directed oppositely to the initial velocity
v0. The deviation of the typical scattering angle  from � is
�−����� /�in�1, determined by the quantum diffraction
	note that we had to expand the energy to the second order in
p̃� in Eqs. �62a� and �62b�
.

Proceeding with the calculation, we substitute Eq. �64�
into Eq. �56�. Angular averaging gives

�
0

2� dq

2�
�	eq� ein
z	eq� e

out
* 
z�2

=
1

8
	�ein · eout��ein

* · e
out
* � + �ein · e

out
* ��e

in
* · eout�

+ �ein · e
in
* ��eout · e

out
* �
 , �65�

so that I2K
 =3I2K

� , as seen from Eq. �43�. We stress that only
the in-plane components of the polarization vectors partici-
pate in these scalar products. Evaluating the q integral and
using Eq. �47�, we obtain the final result,

I2K = � e2

c
�2v2

c2

�out
2

8�2 � FK
2

Mv2�K�qbs�

�27a2

4
�2

�
1

8
� �ein�2

8
�1 − cos�det��3 + cos2 �det�

+
8 − �1 + cos�det�3

12
��ein · edet��2� , �66�

where qbs= ��in+�out� / �2v� is the phonon wave vector cor-
responding to the backscattering and �27a2 /4 is the area per
carbon atom. Equation �8� of Ref. 29 corresponds30 to nor-
mal incidence ��ein�=1�, collection in the full solid angle 4�,
and summation over the two orthogonal directions of edet,
which makes the second line of Eq. �66� equal to 1 /3.

Equation �66� shows how the dominant role of back-
scattering manifests itself in the polarization memory. In-
deed, linearly polarized light preferentially excites electrons
and holes with momenta perpendicular to the electric-field
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vector. After the phonon emission these momenta change to
the opposite, and the photon emitted after the annihilation
has a preferred direction for the polarization, perpendicular
to the electron and hole momenta. Quantitatively, Eq. �66�
gives the ratio of intensities for edetein and edet�ein to be 3
at �det→0 and 23 /9 at �det=� /2 �collection into the solid
angle 2��.

Let us now turn to the 2� phonon peak at 3250 cm−1,
corresponding to emission of two pseudovector E2 phonons
from the vicinity of the � point. Its integrated intensity can
be calculated analogously,

4�
dI2�

doout
=

2�

c2

�out
2

2�2c2

1

2 �
i,j=x,y

� d2q

�2��2 �2Mq
ij�2. �67�

As in Eq. �56�, the factor 1 /2 in front of the sum elimi-
nates double counting in the summation over the final
states�phonon permutations� and the factor of 2 inside the
square takes care of the spin degeneracy. Here, however, the
summation over the two-phonon modes is less simple. First,
let us neglect the phonon dispersion, so that the longitudinal
and transverse phonons are degenerate. The matrix element
is given by

Mq
ij =

2�e2v2

��in�out

LxLyF�
2

2NM��
� d�

2�

d2p

�2��2

� Tr
4�4

��ein · ��G�p,�−�TiG�p + q,�−��

� �e
out
* · ��G�p + q,�+��TjG�p,�+�� + �q → − q� ,

�68�

where Tx=�z�y, Ty =−�z�x. Unitary transformation �11� ro-
tates the isospin as given by Eqs. �59a� and �59b�. Thus, the
trace will be given by an expression, analogous to Eq. �60�,
but with the replacements,

sin2�p+q/2 − p/2� → − ēiē j ,

ēx = − sin
p + p+q

2
, ēy = cos

p + p+q

2
.

All arguments leading to the dominance of backscattering
remain valid, so we obtain e=−eq which means that only the
longitudinal phonons are emitted. Summation of the prob-
ability over the two-phonon polarizations gives �ēx�4+ �ēy�4

+2�ēx�2�ēy�2=1, so the intensity of the 2� peak is given by
one-half of expression �66� with replacements FK→F�, �K
→��,L,

I2� =
1

2
� e2

c
�2v2

c2

�out
2

8�2 � F�
2

Mv2��,L�qbs�

�27a2

4
�2

�
1

8
� �ein�2

8
�1 − cos�det��3 + cos2�det�

+
8 − �1 + cos�det�3

12
��ein · edet��2� . �69�

B. Effect of trigonal warping and electron-hole asymmetry

In Sec. VI A we have calculated the integrated intensities
of 2K and 2� peaks at 2700 and 3250 cm−1, respectively.
According to the data of Ref. 6, I2K / I2��20. At the same
time, for the corresponding electron-phonon coupling con-
stants the nearest-neighbor bond-stretching approximation
gives FK /F�=1, which agrees with DFT calculations of Ref.
31 with the precision of 1%. Then, what is the origin of such
huge difference in the intensities of the two peaks. In this
section we consider the effect of electron-hole asymmetry
and trigonal band warping on the intensities of the two-
phonon Raman peaks with the purpose to check whether the
trigonal warping can explain the observed large difference of
intensities I2K and I2�.

Typically, one neglects corrections to the Dirac spectrum
v�p�, arising from the quadratic term H2�p� in the electronic
Hamiltonian, given by Eq. �12�, as they are smaller than
v�p� by a factor pa�1. However, according to the results of
Sec. VI A two-phonon scattering is sensitive to the directions
of electronic velocities and momenta on the angular scale
���� /�in. This means that effects of �i� phase mismatch
between the electron and the hole, introduced by the first
term in Eq. �12�, and �ii� noncollinearity of velocity and
momentum, introduced by the second term in Eq. �12�, may
become important already when H2�p���, which happens at
a smaller energy scale than H2�p��H1�p�. This means that,
while including H2�p�, we still can neglect higher-order
terms of the expansion �H3 ,H4 , ¯ �.

Thus, we repeat the calculations of Sec. VI A taking into
account the H2�p� term only in the denominator of expres-
sion �60� �the numerator is a smooth function of p, so cor-
rections to it will be small as pa indeed�. Quadratic term �12�
in the Hamiltonian modifies the electron dispersion as

Re !p = vp + �0p2� �3#�p�p2, �70a�

Re !̄p = vp − �0p2� �3#�p�p2, �70b�

� Re !p

�p
= �v

p
+ 2�0� 2�3#�p��p� 2�3#��p�	ez� p
 ,

�70c�

#�p� =
px

3 − 3pxpy
2

p3 = cos 3p, �70d�

#��p� =
3py

3 − 9px
2py

p3 = − 3 sin 3p, �70e�

where the sign of the �0 terms is “�” in !p �electron disper-

sion� and “�” in !̄p �hole dispersion� and the signs of the �3
terms are � and � for K and K� valleys, respectively.

For a given direction eq we choose p0=−p0eq, p1= p1eq,

with p0 and p1 such that Re !p0
+Re !̄p0

=�in, Re !p1

+Re !̄p1
=�out and denote q̃= �q�− p0− p1, p̃=p−p0. The en-
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ergies of the intermediate states to be substituted in Eq. �61�
at the corresponding times can be approximated as

Re !̄0 �
�in

2
− �0p0

2 + �v
p 0 − 2�0 + 2�3#�p0���p0 · p̃�

+ 2�3#��p0�	p0� p̃
z +
v

2p0
3 	p0� p̃
z

2, �71a�

Re !̄1 �
�out

2
− �0p1

2 + �v
p 1 − 2�0" 2�3#�p1���p1 · p̃�

" 2�3#��p1�	p1� p̃
z +
v

2p1
3 	p1� p̃
z

2 + vq̃ ,

�71b�

Re !0 �
�in

2
+ �0p0

2 + �v
p 0 + 2�0 + 2�3#�p0���p0 · p̃�

+ 2�3#��p0�	p0� p̃
z +
v

2p0
3 	p0� p̃
z

2, �71c�

Re !1 �
�out

2
+ �0p1

2 + �v
p 1 + 2�0" 2�3#�p1���p1 · p̃�

" 2�3#��p1�	p1� p̃
z +
v

2p1
3 	p1� p̃
z

2 + vq̃ .

�71d�

As before, the upper �lower� sign corresponds to emission of
scalar E1� �pseudovector E2� phonons, accompanied by inter-
valley �intravalley� electron scattering. Then instead of Eq.
�63� we have

�
0

�

dt0dt1dt̄0dt̄1��t0 + t1 − t̄0 − t̄1�ei�0�p0
2−p1

2��t1−t̄1�−�p0
�t0+t̄0�−�p1

�t1+t̄1�−ivq̃�t1+t̄1�

�� dp

2�
eip̃v�t0+t̄0−t1−t̄1�+2ip̃�0	p0�t0−t̄0�−p1�t1−t̄1�
−2ip̃�3#�q�	p0�t0+t̄0�"p1�t1+t̄1�


�� dp�

2�
e−2ip̃��3#��q�	p0�t0+t̄0�"p1�t1+t̄1�
−i�v/2�p̃�

2 	�t0+t̄0�/p0+�t1+t̄1�/p1
. �72�

Let us denote �p0
+�p1

=2�, introduce T= t0+ t̄0= t1+ t̄1 �the latter equality follows from the longitudinal spatial � function in the
leading order�, $= t0− t̄0=−t1+ t̄1, and rewrite the integral as

�
−�

�

d$�
�$�

� dT

4v
ei�0�p0

2−p1
2�$−�2�+ivq̃�T�

−�

� dp̃�

2�
e−2ip̃��3#��q��p0"p1�T−i�v/p0+v/p1�p̃�

2 T/2

=
1

8iv2� �in�out

�in + �out

1

�eh
� 1

��� + �eh + 2i� − vq̃
−

1

��� − �eh + 2i� − vq̃
� , �73�

where we also denoted

�� = 2	�3#��q��p0" p1�
2 p0p1

v�p0 + p1�
, �74a�

�eh = �0�p0
2 − p1

2� . �74b�

Squaring the matrix element and performing the final inte-
gration, we obtain Eq. �66� with the replacement,

1

�2 →
4

�eh
2 ln

�2 + �eh
2 /4

�2 . �75�

The meaning of this replacement is that when the electron-
hole asymmetry becomes greater than the level broaden-
ing, it starts to play the main role in restricting the energy
denominators from below. Numerically, �0�1 eV�2 /v2

�0.1 eV �see, e.g., Ref. 20�, so the relative correction to Eq.

�66� for small �eh can be estimated as −	�1 /2��eh
2 /

�2��
2 /2�−10−4��in /2��2. The total electronic broadenings
2� were measured by time-resolved photoemission spectros-
copy to be 20 meV in Ref. 21 and 25 meV in Ref. 22 �all
values taken for �=�in /2=1 eV�. A recent ARPES measure-
ment gives a significantly larger value for 2��100 meV, 23

which agrees better with Eqs. �25� and �50�.
The effect of the trigonal warping term �the only one sen-

sitive to the difference between intervalley and intravalley
scatterings� turns out to be small in the parameter �3�in /v2

	in Eq. �73� warping enters through ��, which results only in
a small shift of the integration variable q̃
. For �in=2 eV,
�3=−va /4 �tight-binding model�, we estimate the relative
contribution of the warping term as �� /�in�5�10−4 and
5�10−2 for intervalley and intravalley scatterings, respec-
tively. Thus, trigonal warping cannot account for the ob-
served ratio I2K / I2�.
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VII. FOUR-PHONON RAMAN SCATTERING

A. Resonant manifold

We will calculate only the intensity of the peak which we
will call 4K, the double of the 2K peak at 2700 cm−1. The 4K
peak corresponds to emission of four scalar phonons �A1 in
terms of the C3v symmetry or E1� in terms of the C6v� sym-
metry� from the vicinity of the K and K� points. We will
not consider other four-phonon peaks as their intensity is
smaller.

The integrated intensity of the 4K peak is given by

4�
dI4K

doout
=

2�

c2

�out
2

2�2c2

1

�LxLy�3

8

4!

� �
q1+q2=q̄1+q̄2

�2M−q1,−q2,q̄2,q̄1
�2. �76�

The factor 1 /4! in front of the sum ensures the proper sum-
mation over the final states �phonon permutations�, the factor
of 8 comes from the sum over A1 and B1 modes 	one can

have all four phonons A1, all four B1, or 4! / �2! ·2!�=6 com-
binations of two A1 and two B1 phonons, all other combina-
tions yielding traceless products of �x and �y
, and the fac-
tor of 2 inside the square takes care of the spin degeneracy.
The only fully resonant diagram for the four-phonon matrix
element is shown in Fig. 15. The matrix element is given by
the sum of 4!=24 permutations of the emitted phonon wave
vectors −q1 , −q2 , q2 , q1 	we denote �K�q�=�q for the
sake of compactness
,

M−q1,−q2,q̄2,q̄1
=

2�e2v2

��in�out

	LxLyFK
2 /�2NM�
2

��q1
�q2
�q̄1
�q̄2

� d�

2�

d2p

�2��2 Tr
4�4

��ein · ��G�p,� − �in/2��zG�p + q̄1,� − �in/2 + �q̄1
�

��zG�p + q̄1 + q̄2,� − �in/2 + �q̄1
+ �q̄2

��e
out
* · ��G�p + q1 + q2,� + �in/2 − �q1

− �q2
�

��zG�p + q1,� + �in/2 − �q1
��zG�p,� + �in/2�� + �23 other permutations of q ’ s� . �77�

Again, we switch to the basis of Dirac eigenstates according to Eqs. �58� and �59a�–�59d� and evaluate the trace,

Tr
4�4

�¯� = 2
	ep� ein
z sin�p/2 − p+q̄1

/2�sin�p+q̄1
/2 − p+q̄1+q̄2

/2�

�� − �in/2 + !̄p��� − �in/2 + �q̄1
+ !̄p+q̄1

��� − �in/2 + �q̄1
+ �q̄2

+ !̄p+q̄1+q̄2
�

�
	ep+q1+q2

� e
out
* 
z sin�p+q1+q2

/2 − p+q1
/2�sin�p+q1

/2 − p/2�

�� + �in/2 − �q1
− �q2

− !p+q1+q2
��� + �in/2 − �q1

− !p+q1
��� + �in/2 − !p�

. �78�

Just like for the two-phonon scattering, the dominant contri-
bution to the integrals will come from those momenta which
make small all the factors in the denominators of the above
expression. The real parts of the electron and hole dispersion,

Re !p, Re !̄p, are given by Eqs. �70a� and �70b�, and Im !p

=Im !̄p=−�p.
Four-phonon wave vectors −q1 , −q2 , q2 , q1, such that

q1+q2=q2+q1, will be said to satisfy resonance conditions if
exists a vector p0 such that the following equalities hold:

Re !p0
=
�in

2
, �79a�

Re !p0+q1
=
�in

2
− �q1

, �79b�

Re !p0+q̄1
=
�in

2
− �q̄1

, �79c�

Re !p0+q1+q2
=
�in

2
− �q1

− �q2
, �79d�

Re !p0+q̄1+q̄2
=
�in

2
− �q̄1

− �q̄2
. �79e�

The structure of the manifold defined by these conditions
essentially depends on �i� whether we take into account the

electron-hole asymmetry or just set Re !p=Re !̄p=v�p� and
�ii� whether we take into account the phonon dispersion or
just set �q=�0. Indeed, subtracting Eq. �70e� from Eq. �79d�,
we obtain

q2

q̄2

q1

q̄1

FIG. 15. The only fully resonant diagram for the four-phonon
Raman amplitude in the leading order.
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�q1
+ �q2

+ Re !p0+q1+q2
= �q̄1

+ �q̄2
+ Re !̄p0+q1+q2

,

�80�

which in the phonon-dispersionless case represents either an

identity if !p= !̄p or can never be satisfied if !p� !̄p, thus
leading to a finite-energy mismatch; only in the phonon-
dispersive case it represents a nontrivial equation. As will be
seen in Sec. VII F, the quantitative condition for the phonon
dispersion to matter is that the phonon group velocity vph
%v max�� ,�eh� /�in, where � is the typical value of the elec-
tron broadening and �eh is the typical value of the electron-
hole asymmetry, defined analogously to Eq. �74b�.

First, let us focus on the electron-hole symmetric and dis-

persionless case, Re !p=Re !̄p=v�p�, �q=�0 when the struc-
ture of the resonant manifold 	Eqs. �79a�–�79e�
 is the sim-
plest. The resonant manifold can be parametrized by four
polar angles 0 , 1 , ̄1 , 2, which determine the positions
of the four momenta p0, p1�p0+q1, p1�p0+q1, and p2
�p0+q1+q2=p0+q1+q2 on the three circles v�p0�=�in /2,
v�p1�=v�p1�=�in /2−�0, and v�p2�=�in /2−2�0 �Fig. 16�.
Since the total number of independent phonon variables is
six, there are two more variables besides the four angles,
which correspond to deviations of the phonon momenta from
the resonant manifold. There is a freedom of choice for them,
and we choose them to correspond to stretching of the vec-
tors p1 ,p1 �denoted by w , w̄, respectively�,

�q1 = − 	ez� p0
�0 + 	ez� p1
�1 + p1�w , �81a�

�q2 = 	ez� p2
�2 − 	ez� p1
�1 − p1�w , �81b�

�q̄1 = − 	ez� p0
�0 + 	ez� p̄1
�̄1 + p̄1�w̄ , �81c�

�q̄2 = 	ez� p2
�2 − 	ez� p̄1
�̄1 − p̄1�w̄ . �81d�

The q integration measure is transformed as

d2q1d2q2d2q̄1 = �p1�2�p̄1�2�	p0� p2
z�

� d0d2d1d̄1dwdw̄ . �82�

Thus, six independent integration variables, parametrizing
the final state, have been separated into two groups: four
angles, determining the position of the phonon momenta on

the resonant manifold, and two deviations w , w̄ from the
manifold. The dependence of the integrand on the first group
of variables is smooth, and we will call them slow variables.
The deviations from the manifold, on the contrary, suppress
the integrand dramatically, so we will call them fast vari-
ables.

Let us now consider the other 23 permutations of the pho-
non wave vectors −q1 , −q2 , q̄2 , q̄1, which have to be added
in order to obtain the correct value of the matrix element M.
We need to check whether contributions to M from different
permutations can be large at the same time �i.e., for the same
values of the integration variables −q1 , −q2 , q̄2 , q̄1�. If this
is not the case for all 23 permutations, then the summation
over all permutations in M would just cancel the factor 1 /4!
in Eq. �76�.

First, we note that if three momenta p0, p0+q1, and p0
+q1+q2 satisfy the resonance conditions �79a�–�79e� �i.e.,
they lie on the corresponding circles� for some p0, then the
momenta p0�, p0�+q2, and p0�+q1+q2 do not satisfy these con-
ditions for any p0�. Indeed, the vector q1+q2 can be placed on
the circles only in two ways, which leaves only two choices
for the momentum p0�: p0�=p0 or the symmetric one. For
none of them does p0�+q2 lie on the circle, unless the con-
figuration of momenta has special symmetries. This means
that the corresponding contribution to the matrix element is
small, so the permutation q1↔q2 should be discarded. By
analogous argument we can discard all 14 permutations
which leave at least one of the q’s in place �this immediately
leaves only two choices for p0� which can be inspected�. Four
cyclic permutations are eliminated because the circles have
different radii. The permutation q1↔q2 , q̄1↔ q̄2 is elimi-
nated by the very first argument. Thus, we are left with four
permutations. One is −q1 ,−q2 , q̄2 , q̄1→ q̄1 , q̄2 ,−q2 ,−q1, and
it does satisfy resonance conditions �79a�–�79e� if one
chooses p0�=−p0. The other three are obtained from it by
swapping the first two momenta, the last two, or both, and
thus do not satisfy the resonance conditions. The permutation
−q1 ,−q2 , q̄2 , q̄1→ q̄1 , q̄2 ,−q2 ,−q1 is nothing else but the re-
sult of reversal of the electronic line direction in the loop in
Fig. 15. As seen from Eq. �78�, this permutation gives ex-
actly the same contribution as the original one. Thus, their
interference results in an additional factor of 2 besides can-
cellation of 1 /4! in Eq. �76�.

B. Quasiclassical representation

Now let us pass to time representation for the matrix ele-
ment M by rewriting each factor in the denominator of ex-
pression �78� analogously to Eq. �61�. We introduce three
time variables for the electron and three for the hole, denoted
by t0 , t1 , t2 and t̄0 , t̄1 , t̄2, respectively. Next, we introduce
the deviation p̃=p−p0 from the point p0 fixed by the reso-
nance conditions and expand each factor in the denominator
of expression �78� as

−
�in

2
+ !̄p � v̄0p̃ − i�̄0 − �0p0

2, �83a�

p

p
p

p
1

0

1

2

q2

q

q2

1

1q

FIG. 16. Structure of the resonant manifold of electron and pho-
non momenta for four-phonon Raman scattering in the approxima-

tion Re !p=Re !̄p=v�p�, �q=�0.
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−
�in

2
+ �q̄1

+ !̄p+q̄1
� v̄1p̃ − i�̄1 + w̄vp̄1 + ��q̄1

− �0p1
2,

�83b�

−
�in

2
+ �q̄1

+ �q̄2
+ !̄p+q̄1+q̄2

� v̄2p̃ − i�̄2 + ��q̄1
+ ��q̄2

− �0p2
2, �83c�

�in

2
− !p � − v0p̃ + i�0 − �0p0

2, �83d�

�in

2
− �q1

− !p+q1
� − v1p̃ + i�1 − wvp1 − ��q1

− �0p1
2,

�83e�

�in

2
− �q1

− �q2
− !p+q1+q2

� − v2p̃ + i�2 − ��q1
− ��q2

− �0p2
2, �83f�

where vi ,−v̄i and �i , �̄i are the velocities and the damping
rates of the electron and the hole, respectively, in the ith
intermediate state. In Eqs. �83a�–�83f� we have also taken
into account the electron-hole asymmetry and the phonon
dispersion ��q=�q−�0, both assumed to be weak: �0p0,1,2

2

��0, ���q���0. Within this approximation we can take v0

= v̄0 and v2=v2̄.
The numerator of Eq. �78� is a smooth function of mo-

menta on the scale � /v, so it can be taken at p̃=0, i.e., on the
resonant manifold. Then the integration over d2p̃ / �2��2

gives a spatial � function,

� d2p̃

�2��2e−ip̃�v̄0t̄0+v̄1t̄1+v̄2t̄2+v0t0+v1t1+v2t2�

= ��v̄0t̄0 + v̄1t̄1 + v̄2t̄2 + v0t0 + v1t1 + v2t2� ,

so in order to recombine, the electron and the hole should
meet at the same spatial point. As a result, the denominator
of Eq. �78�, integrated over d� / �2�� and d2p̃ / �2��2, is re-
written as

�
0

�

e−&��t0 + t1 + t2 − t̄0 − t̄1 − t̄2�

���v̄0t̄0 + v̄1t̄1 + v̄2t̄2 + v0t0 + v1t1 + v2t2�

�dt0dt1dt2dt̄0dt̄1dt̄2, �84a�

& = i	wvp1t1 + w̄vp̄1t̄1 + ��q1
�t1 + t2� + ��q2

t2 + ��q̄1
�t̄1 + t̄2�

+ ��q̄2
t̄2
 + i�0�

i=0

2

pi
2�ti − t̄i� + �

i=0

2

��iti + �̄it̄i� . �84b�

C. Integration over deviations

The part of the summation over final phonon states in Eq.
�76�, corresponding to the integration over the deviations

w , w̄, can be performed explicitly. Let us open the � func-
tions in Eq. �84a� choosing t0 , t1 , t̄1 as independent vari-
ables,

t0 + t̄0 =
	v2� �v1t1 + v̄1t̄1�
z

	v0� v2
z
, �85a�

t2 + t̄2 =
	v0� �v1t1 + v̄1t̄1�
z

	v2� v0
z
, �85b�

t2, t̄2 = " �t0 +
t1 − t̄1

2
� +

	�v0" v2�� �v1t1 + v̄1t̄1�
z

2	v2� v0
z
.

�85c�

The Jacobian of this transformation is given by

� dt̄0dt2dt̄2��t0 + t1 + t2 − t̄0 − t̄1 − t̄2�

��	v0�t0 + t̄0� + v2�t2 + t̄2� + v1t1 + v̄1t̄1
 =
1

2�	v0� v2
z�
.

�85d�

The detuning phase from Eq. �84b� can be written as

Im & = wvp1t1 + w̄vp̄1t̄1 + �t0, �86a�

�� ��q̄1
+ ��q̄2

− ��q1
− ��q2

+ 2�eh, �86b�

where all detunings at t1 , t̄1 have been absorbed into a shift of
w , w̄. The energy mismatch due to electron-hole asymmetry,
�eh=�0�pin

2 − pout
2 �, is analogous to that defined in Eq. �74b�.

The damping factor is �we use the fact that �0= �̄0, �2= �̄2�

Re & = �0�t0 + t̄0� + �1t1 + �̄1t̄1 + �2�t2 + t̄2�

= � 	v2� v1
z

	v0� v2
z
�0 + �1 +

	v0� v1
z

	v2� v0
z
�2�t1

+ � 	v2� v̄1
z

	v0� v2
z
�0 + �̄1 +

	v0� v̄1
z

	v2� v0
z
�2� t̄1

� �xt1 + �yt̄1. �87�

The two times t1 , t̄1 can be taken to vary independently from
0 to �. The integration domain for t0, which we denote by O,
besides the condition t0%0, is determined by the inequalities

t0'
	v2� �v1t1 + v̄1t̄1�
z

	v0� v2
z
, �88a�

t0'
t̄1 − t1

2
+

	�v2 − v0�� �v1t1 + v̄1t̄1�
z

2	v0� v2
z
, �88b�

t0%
t̄1 − t1

2
+

	�v2 + v0�� �v1t1 + v̄1t̄1�
z

2	v0� v2
z
. �88c�

Consider integral �84a�. Squaring its modulus and inte-
grating over w , w̄, we obtain
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I �� �Eq. �84a��2dwdw̄

=
�2

v2p1p̄1	v0� v2
z
2�

0

�

dt1dt̄1e−2�xt1−2�yt̄1

� �
O

dt0dt0�e
i��t0−t0��. �89�

We pass to the polar coordinates in the �t1 , t̄1� plane,

t1 = t cos (, t̄1 = t sin ( , �90�

and parametrize the region O as

O = �t0:t)min�(�' t0' t)max�(�� , �91�

where )min�(� and )max�(� are piecewise functions of the
form � cos (+* sin (, corresponding to various conditions
�88a�–�88c�. Performing the integration, we obtain

I =
�2

v2p1p̄1	v0� v2
z
2

2

�4�
0

�/2

d(

�F�)max�(� − )min�(�,
2�x cos ( + 2�y sin (

�
� ,

�92a�

F�x,y� � �
0

�

�1 − cos xt�e−yttdt =
x2�x2 + 3y2�
y2�x2 + y2�2 . �92b�

D. Angular integration and polarization dependence

Let us collect all the factors in the expression for I2D* 	we

denote e0,2= �cos 0,2 , sin 0,2�


4�
dI4K

doout
= 2�� e2

c
�2v2

c2� �K

2�
�4�out

2 ��in + �out�2

4

�� d0d2d1d̄1

�sin�0 − 2��
�	e0� ein
z�2�	e2� eout
z�2

� sin2 0 − 1

2
sin2 1 − 2

2
sin2 0 − ̄1

2

�sin2 ̄1 − 2

2
�

0

�/2 d(

�4

�F�)max�(� − )min�(�,
2�x cos ( + 2�y sin (

�
� .

�93�

A system of two linear equations,

v0tin + v1t1 + v2tout + v̄1t̄1 = 0, �94�

has solutions with tin , tout , t1 , t̄1%0 if and only if the four
vectors v0 , v1 , v2 , v̄1 do not lie in one half-plane. Having
found tin , tout , t1 , t̄1, we can always split tin= t0+ t̄0, tout= t2

+ t̄2 in such a way that t0+ t1+ t2= t̄0+ t̄2+ t̄2 �since any side of

a quadrangle is shorter than the sum of the other three sides�.
This condition on the vectors v0 , v1 , v2 , v̄1 translates into
the following condition on the angles �since all conditions
are on 2−0, 1−0, and ̄1−0, we set 0=0 for brevity�:

0	 2'� ,

1: 	0;2
 	2;�� ��;2 + �� �2 + �;2�
 ,

̄1: ��;2 + �� ��;1 + �� �0;2�� �1 − �;2 + �� ,

− �' 2	 0,

1: 	0;2 + �� �2 + �;�
 ��;2 + 2�
 	2 + 2�;2�
 ,

̄1: �2 + �;1 + �� �0;2�� �1 − �;�� �2 + �;�� ,

2 = � ,

1: �0;�� ��;2�� ,

̄1: ��;2�� �0;�� , �95�

which define the domain of the angular integration. We also
show it schematically in Fig. 17.

Upon integration over 1 , ̄1 Eq. �93� can be written in
the form

4�
dI4K

doout
= �

0

2�

d0d2J�0 − 2��	e0� ein
z�2�	e2� eout
z�2.

�96�

The function J�� is real and even, J��=J�−�, as can be
seen from Eq. �78�, so its Fourier series reads as

J�� =
J0

2�
+ �

n=1

� Jn

�
cos n, Jn = �

0

2�

dJ��cos n .

�97�

Then the angular integration gives

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

0 π π + ϕ2 2π

ϕ1

ϕ̄1

π

π + ϕ2

2π

0 ππ + ϕ2 2π

ϕ1

2π
ϕ̄1

π

π + ϕ2

0 < ϕ2 < π −π < ϕ2 < 0

FIG. 17. Region of integration over 1 , ̄1 as determined by
inequalities �95� for 0'2'� and �'2'2�.
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4�
I4K

doout
= 2��ein�2�eout�2

��J0

4
+

J2

8
	cos2�in − out� − sin2�in − out�
�

= 2��J0

4
−

J2

8
��ein�2�eout�2

+ 2�
J2

8
	�ein · e

out
* �2 + �ein · eout�2
 . �98�

Comparing this with Eq. �43�, we obtain I4K
�,

=2��J0 /4"J2 /8�.

E. Dispersionless phonons

For �=0 �electron-hole symmetric case� the last integral
in Eq. �93� can be written as

�
0

�/2

d(
3	)max�(� − )min�(�
2

16	�x cos ( + �y sin (
4 . �99�

Numerical evaluation of the angular integral �for simplicity
we set all �0=�1= �̄1=�2=�� gives the following expression
for J0 ,J2 to be substituted in Eq. �98�:

�J0

J2
� = � e2

c
�2v2

c2� �K

2�
�4�out

2 ��in + �out�2

4

3�

8�4�0.0440

− 0.0017.
�

�100�

This results in I4K
� � I4K

 , so the polarization memory is al-
most completely lost. Adding the contributions from two mu-
tually perpendicular detection polarizations 	Eq. �48�
, we
obtain

I4K = 0.0440� e2

c
�2v2

c2� �K

2�
�4�out

2 ��in + �out�2

4

�
�2

8�4

4 − 3 cos�det − cos3�det

4
�ein�2. �101�

For �ein�=1, �det=�, and �in��out this expression
corresponds30 to Eq. �9� of Ref. 29.

For ��eh�
�x ,�y �strong electron-hole asymmetry� the
last integral in Eq. �93� can be written as

�
0

�/2 d(

4�2	�x cos ( + �y sin (
2 . �102�

Numerical evaluation of the angular integral gives

�J0

J2
� = � e2

c
�2v2

c2� �K

2�
�4�out

2 ��in + �out�2

4

�

8�2�eh
2 �2.60

0.06.
�

�103�

To obtain the expression for I4K one should replace 0.0440
→2.60, �2 / �8�4�→�2 / �24�2�eh

2 � in Eq. �101�,

I4K = 2.60� e2

c
�2v2

c2� �K

2�
�4�out

2 ��in + �out�2

4

�
�2

24�2�eh
2

4 − 3 cos�det − cos3�det

4
�ein�2. �104�

F. Dispersive phonons

In the case when � varies strongly compared to � but
vanishes on a certain submanifold of the resonant manifold,
the appropriate way to approximate the last integral in Eq.
�93� is

2������
0

�/2

d(
)max�(� − )min�(�

8	�x cos ( + �y sin (
3 . �105�

This expression corresponds to complete suppression of in-
terference between trajectories of different shapes by the
phase mismatch coming from the difference of the phonon
frequencies. In this case the electron-hole dynamics can be
described by a kinetic equation, analyzed in Appendix C �up
to an overall interference factor, see the discussion in the end
of Appendix C�.

First, let us focus on the apparent singularity at sin�2
−0�→0 in the angular integral in Eq. �93�. For generic
1 , ̄1, we see from Eq. �87� that �x,y�1 /sin�2−0� and
from Eqs. �88a�–�88c� that )max�(� either stays finite �at 2
�0� or also diverges as 1 /sin�2−0� �at 2�0+��.
Thus, the power of sin�2−0� in the numerator of expres-
sion �105� is sufficient to suppress the singularity.

The real danger in the angular integral comes from singu-
larities of the Jacobian corresponding to the resolution of
����, i.e., values of 1 , ̄1 such that

���p1−p0
+ �p2−p1

�

�1
= 0,

���p̄1−p0
+ �p2−p̄1

�

�̄1

= 0.

�106�

Looking at the integrals,

�
−1

1

dxdy��x − y2� = �
−1

1 dx

2��x�
= 2, �107a�

�
−1

1

dxdy��x2 + y2� = �
0

1

2�rdr
��r�
2r

=
�

2
, �107b�

�
−1

1

dxdy��x2 − y2� = 2�
−1

1 dx

2�x�
= 2 ln

1

0
, �107c�

we notice that the logarithmic divergence appears when both
1 and ̄1 lie near one of these special points. Note that both
1 and ̄1 should lie near the same solution for the energy �
function itself to be satisfied.

At this point we have to assume a particular form of the
phonon dispersion �q. We take the conical dispersion �q
=�0+vph�q� valid for �0 /v�q�1 /a.57 Then the singular
points are determined from the equation
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p0

q1
sin�1 − 0� +

p2

q2
sin�1 − 2� = 0, �108a�

q1 = �p0
2 + p1

2 − 2p0p1 cos�1 − 0� , �108b�

q2 = �p1
2 + p2

2 − 2p1p2 cos�2 − 1� , �108c�

which is the same for 1 and ̄1, since p1= p̄1. Let us denote
the singular points by 1

s , labeled by the index s. Around
each singular point we can expand

�q1
+ �q2

� �s +
�s�

2
̃1

2, ̃1 = 1 − 1
s , �109a�

�q̄1
+ �q̄2

� �s +
�s�

2
̃̄1

2, ̃̄1 = ̄1 − 1
s . �109b�

The second derivative in each singular point is given by

vph

2q1
p1p0 cos�1

s − 0� +
vph

2q2
p1p2 cos�1

s − 2�

−
vph

4q1
3 p1

2p0
2 sin2�1

s − 0� −
vph

4q2
3 p1

2p2
2 sin2�1

s − 2�

� �s��0,2� . �110�

To get an idea of the location of singular points, we plot the
left-hand side of Eq. �108a� as a function of 1 for 2 close
to 0 and to 0+� �Fig. 18�. We see that in the first case Eq.
�108a� has two solutions, while in the second case four. This
means that there is a special value of 2 between 0 and �
�together with the symmetric one�, such that Eq. �108a� has
three solutions and at the third solution the derivative �s�,
defined in Eq. �110�, vanishes. This situation will take place
as long as �0 /�in' �3−�5� /4=0.191¯, i.e., �in%0.9 eV,
as can be established by setting 0=0, 1=2=� 	so that Eq.
�108a� is satisfied
 and equating �s�=0. However, when these
conditions are fulfilled and when 2 takes this special value,

the third solution for 1 always lies in the smaller sector
between 0 and 2 and does not belong to the integration
region. As a result, there is always just one solution of Eq.
�108a�, which satisfies �'1−0'�+2−0 for 0'2
−0'� and 2−0−�'1−0'� for �'2−0'2�
	i.e., inequalities �95�
 and thus contributes to the intensity
integral. We denote this solution by 1

0.
Integration over the deviations ̃1=1−1

0, ̃̄1= ̄1−1
0

gives

̃1d̃̄12����� =
4�

���� � d̃1d̃̄1��̃1
2 − ̃̄1

2 − 4�eh/���

=� �2�/���d̃1d̃̄1

�̃̄1
2 + 4�eh/��

�
�

��̃1��̃̄1
2 +

4�eh

��
�

�
4�

����
ln� ��

max��,�eh�
� . �111�

Generally, the upper and lower integration limits here are of
the order of �1; more precise knowledge is not needed for
the calculation of the leading logarithmic term. It is impor-
tant that the energy � function has a finite width ��, which
may cut off the divergency first, if it is greater than �eh. The
innermost integral over (, assumed to be a nonsingular func-
tion of 1 , ̄1, can be taken at 1= ̄1=1

0. To check the
validity of this assumption, we have to study in more detail
the behavior of the integral at 2−0→0,�.

To make the formulas more compact, in the following we
set 0=0 as all angles can be counted from 0. For simplicity
we also perform the calculations in the limit �0��in. Then,
assuming −�'2'�, we simply obtain 1

0=�+2 /2.
Let us start from the simpler case of 2 close to ��,

denoting ̃2=2+� if −�'2'0 and ̃2=2−� if 0'2
'�. Then for 1= ̄1=0 we have

)max�(� = −
cos ( + sin (

2 sin�̃2/2�
+

1

2
min�− cos ( + sin (,0� ,

�112a�

)min�(� =
1

2
max�− cos ( + sin (,0� . �112b�

For �̃2��1 the condition )max�(�%)min�(� severely restricts
the integration domain in (, so 2��� does not introduce
any extra singularities.

For �2��1 we have

)max�(� = min� cos ( + sin (

2
− f1�(�,sin (� ,

�113a�

)min�(� = max� sin ( − cos (

2
− f1�(�,0� , �113b�

�a�

Π 2 Π

�1.5
�1
�0.5

0.5
1

1.5

�b�

Π 2 Π

�1

�0.5

0.5

1

FIG. 18. �Color online� Plot of the left-hand side of Eq. �108a�
as a function of 1 for �a� 0=0, 2=0.2 and �b� 2=�−0.2. The
incident laser frequency �in=2 eV, �0=0.17 eV.
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f1�(� =
̃1 cos ( + ̃̄1 sin (

2
. �113c�

Again setting all �0=�1= �̄1=�2=�, we obtain simply �x
=�y =2�. The requirement )min�(�')max�(� translates into

�f1�(��'
cos ( + sin (

2
. �114�

If �1� , �̃̄1�
 �2�, then only ̃1�−̃̄1 contribute to integral
�111� �for ̃1� ̃̄1 the domain of integration is restricted
by �̃1�'2 /2�. Then constraint �114� allows only small
deviations of ( from � /4, thus we can approximate f1�(�
�−�2�̃1 /2��(−� /4�. In the opposite limiting case,
�1� , �̃̄1�� �2�, range of ( is almost unrestricted, and both
̃1��̃̄1 will contribute. The ( integral in Eq. �105� in
these two limiting cases is calculated to be

�
0

�/2

d(
)max�(� − )min�(�

8	�x cos ( + �y sin (
3 �
1

256�3 min�1,� 2

2̃1
�� .

�115�

Thus, we conclude that for �2��1 the upper cutoff in loga-
rithmic integral �111� is �2� and not of the order of 1. Thus,
upon integration over 2 we obtain the second logarithmic
divergence, which should be cut off at �2��1 above and
�2��max�� ,�eh� /�� below.

We restrict ourselves to the calculation of the leading
logarithmic asymptotics, so second derivative �110� can be
taken at 2=0=0 and is simply ��=−�invph / �4v�. The
function J��, defined in Eq. �96�, can be taken to be

J�� =
�2

8
� e2

c
�2v2

c2� �K

2�
�4�in

3

�3

v
vph

1

��
ln

���invph/v
max��,�eh�

.

�116�

The final integration leads to the following expression for
J0 ,J2 to be substituted in Eq. �98�:

J0 = J2 =
�2

8
� e2

c
�2v2

c2� �K

2�
�4�in

3

�3

v
vph

ln2 �invph/v
max��,�eh�

,

�117�

so that I4K
 =3I4K

� , as for two-phonon scattering. Thus, the
polarization dependence is the same as that described in Sec.
VI A. Using Eq. �47�, we obtain the final result,

I4K = � e2

c
�2v2

c2� �K

2�
�4�in

3

�3

v
vph

ln2 �invph/v
max��,�eh�

�
�3

32
� �ein�2

8
�1 − cos�det��3 + cos2 �det�

+
8 − �1 + cos�det�3

12
��ein · edet��2� . �118�

To conclude this section, we note that the leading logarithmic
term, calculated here, is not sensitive to the assumption of
the conical phonon dispersion �q. The same result will be
obtained for dispersion of any shape; the phonon group ve-

locity should be taken at the wave vector q=�in /v, corre-
sponding to electron backscattering.

VIII. RENORMALIZATION OF THE COUPLING
CONSTANTS

A. Coulomb renormalization

As discussed in the beginning of Sec. VI B, the measured
ratio of the integrated intensities of 2K and 2� peaks at 2700
and 3250 cm−1, I2K / I2��20,6 is in noticeable disagreement
with the calculated values of electron-phonon coupling
constants.31 In this section we investigate how the electron-
phonon coupling constants are renormalized by the Coulomb
interaction between electrons. A brief account of this part has
been reported in the short publication.34

We are going to consider only the long-range part of the
Coulomb interaction �i.e., smooth on the length scale of the
lattice constant�. Such interaction does not mix the states in
different valleys, so the interaction Hamiltonian can be writ-
ten as

Ĥee =
e2

2
� d2rd2r�

+̂�r�+̂�r��
�r − r��

, +̂�r� = �̂†�r��̂�r� .

�119�

In this equation we have not included explicitly the screening
by the background dielectric constant of the substrate �� �the
high-frequency value�, which can be taken into account by
incorporating it into e2.

The electronic self-energy due to the Coulomb interaction
�the Fock term� �ee�p ,�� is shown in Fig. 19. Its leading
logarithmic asymptotics is given by37

�ee�p,�� = i� d�

2�

d2q

�2��2V�q,��G�p − q,� − ��

�
8

�2N
	f�g��2� − vp�� − f̃�g��� − vp��
ln

!max

!min
,

�120�

f�g� = 1 −
�

2g
+

arccos g

g�1 − g2
, f̃�g� =

g arccos g
�1 − g2

, �121�

q
= −i

2πe2

q

−iΣee(p, ε) =

−iV (q, ω) = = +

FIG. 19. Electronic self-energy from the RPA-screened Cou-
lomb interaction.
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V�q,�� =
16g

N
v
q

��vq�2 − �2

gvq + ��vq�2 − �2
. �122�

Here we have introduced the total number of the Dirac spe-
cies, N=4, which takes into account the valley and the spin
degeneracy �the latter enters as factor of 2 multiplying the
electron polarization operator�. The lower cutoff !min
�max�vp ,��, the upper cutoff !max�v /a is of the order of
the electronic bandwidth, and the dimensionless Coulomb
coupling constant is defined as

g =
�Ne2

8v
. �123�

The derivation of Eq. �120� is given in Appendix D. The
logarithmic divergence in the Fock self-energy �ee is due to
the long-distance nature of the Coulomb interaction and thus
is not picked up by local approximations such as LDA or
GGA.

The random-phase approximation �RPA� for V�q ,��,
shown in Fig. 19, corresponds to expansion of the coefficient
in front of the logarithm to the leading order in the parameter
1 /N=0.25, assumed to be small. This assumption is better
justified than the expansion in g, which would be obtained if
we used the bare coupling 2�e2 /q instead of the RPA-
dressed one V�q ,��. Indeed, for N=4 we have g
= �� /2��e2 /v��3.4; taking into account the background di-
electric screening reduces it to g�1.

The presence of the large logarithm invalidates the simple
first-order expansion in 1 /N and makes it necessary to sum
all leading logaritmic terms ��1 /N�n lnn�!max /!min� of the
perturbation theory. This summation is performed using the
standard renormalization-group �RG� procedure. Let us in-
troduce the running cutoff !maxe

−�. One RG step consists of
reducing the cutoff, �→�+��, so that e��
1, while
�1 /N����1. Inverse Green’s function transforms as

� − vp · � − ��p,�� =
� − �v + �v�p · �

1 + �Z
, �124�

where Z is chosen to preserve the coefficient at � upon re-
scaling of the electronic fields, �→ �1+�Z /2��,

1

1 + �Z
= 1 −

��

��
. �125�

The renormalization of the velocity is then given by

�v
v

=
��

��
+

��

��vp · ��
. �126�

Next, we need to determine renormalization of the cou-
pling constants. The electron charge is not renormalized, as
guaranteed by the gauge invariance, so the renormalization
of the Coulomb coupling constant g is determined by renor-
malization of the velocity v. The correction to the electron-
phonon coupling constants is determined by the diagram in
Fig. 20 and is evaluated in Appendix D. The results are

�F�
F�

= �Z +
8

�2N
	 f̃�g� − f�g�
ln

!max

!min
, �127a�

�FK

FK
= �Z +

8

�2N
f̃�g�ln

!max

!min
. �127b�

Let us pass to dimensionless electron-phonon coupling con-
stants ��, �K, introduced in Eq. �24�. Then the equations for
the RG flow are the following:

d ln g

d�
= −

8

�2N
f�g� , �128a�

d ln ��
d�

= 0, �128b�

d ln �K

d�
=

16

�2N
f�g� . �128c�

As f�g� is positive and monotonous �see Fig. 21�, g flows to
weak coupling;35 if the initial value of g is large,

f�g� = 1 −
�

2g
+ O�g−2� ⇒ g��� = g�0�e−8�/��2N�, �129�

while at small g we have

f�g� =
�g

4
+ O�g2� ⇒ g��� =

g�0�
1 + 2�g�0�/��N�

. �130�

Integration of Eqs. �128a�–�128c� yields the following rela-
tion:

�K���
�K�0�

= �g�0�
g����2

= �v���
v�0��2

, �131�

which, in principle, can be checked experimentally. Thus, �K
is enhanced, which is in qualitative agreement with the Ra-
man data; according to the results of Sec. VI A, the ratio of
the intensities of the two-phonon peaks is I2K / I2�
=2��A1

/���2.

FIG. 20. Diagram describing the logarithmic correction to the
electron-phonon vertex due to the Coulomb interaction in the order
O�1 /N�.

0 0.5 1 1.5 2 2.5
g

0

0.5

1

f(g)

0 0.5 1 1.5 2 2.50

0.5

1

FIG. 21. Plot of the function f�g� defined in Eq. �121�.
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To study the behavior of the coupling constants quantita-
tively, we solve Eqs. �128a�–�128c� numerically. The largest
value of � is determined by the lower cutoff !min���
�0.2 eV. In Fig. 22, we show the flow of �K for three values
of the bare Coulomb coupling constant: g�0�=3.4 �corre-
sponding to no dielectric screening at all�, g�0�=1.5, and
g�0�=0.5. The bare values of the the electron-phonon cou-
pling constants ���0�=0.035, �K�0�=0.040 were chosen �i�
to satisfy the relation ���0� /�K�0�=�K /��, valid in the
tight-binding approximation, and �ii� to reproduce the experi-
mental value ���0.035. Note that the RPA calculation with-
out the RG collection of all leading logarithmic terms would
give all dependencies in Fig. 22 to be straight lines with
slopes fixed at 10 eV. A comparable error would be produced
by the GW approximation, which neglects vertex corrections
and thus picks up correctly only the first term of the loga-
rithmic series.

To estimate the EPC strength relevant for Raman scatter-
ing, we identify the running cutoff with the typical electronic
energy, involved in the process, thus stopping the RG flow at
electronic energies ��1 eV �half of the incident laser fre-
quency�. In the unscreened case, g�0�=3.4, it gives �A1

/��
�3.2, in agreement with the observed ratio I2K / I2��20.

Finally, we wish to note that the cancellation of the self-
energy and vertex corrections, leading to d�� /d�=0 in Eq.
�128b�, is not occasional. Indeed, comparing Eqs. �23� and
�28�, we can see that coupling to the E2 phonon displacement
uE2

has the same form as the coupling to the vector potential
A with the correspondence uE2x↔Ay, −uE2y↔Ax �up to the
sign, different for the K ,K� valleys�. This means that a uni-
form phonon displacement uE2

can be gauged out of the elec-
tronic Hamiltonian, which should hold for both intial and
renormalized Hamiltonians. Thus, gauge invariance requires
that F� is renormalized in the same way as the velocity v.
Since ���F�

2 /v2, it must remain constant.

B. Renormalization due to the electron-phonon coupling

It turns out that the Coulomb interaction is not the only
source of renormalizations. Since the electron-phonon self-

energy �ph�p ,��, calculated in Sec. IV C, also has a logarith-
mic divergence, renormalizations due to electron-phonon in-
teraction should be taken into account as well. However, in
practice, the electron-phonon coupling is so weak ����1,
see Sec. VIII A�, that its effect is negligible, so that Sec.
VIII A contains all the practical information. Still, for the
sake of completeness, in this section we describe the theory
of renormalizations due to electron-phonon coupling.

Let us return to the electron-phonon self-energy
�ph�p ,��=���p ,��+�K�p ,��, calculated in Sec. IV C. The
leading logarithmic asymptotics of �ph is given by �see also
Appendix D�

�ph�p,�� = i� d�

2�

d2q

�2��2�
�

F�
2

2M��

�27a2

4
D����

� �����G�p − q,� − �������

�
�� + �K

2�
� ln

!max

!min
. �132�

Here the phonon mode index � runs over the two modes
belonging to the E2 representation and the two modes be-
longing to the E1� representation, the corresponding matrices
����� being −�z�y, �z�x, �x�z, and �y�z. The upper and
lower cutoffs are given by !max�v /a, !min�max�� ,���. The
dimensionless constants ��, �K, defined in Eq. �24�, will be
treated as small parameters.

The latter statement deserves some discussion. In prin-
ciple, one could proceed analogously to the Coulomb case;
instead of doing the perturbative expansion in ��, one could
dress the bare phonon propagators by the appropriate polar-
ization operators ��q ,��, corresponding to 1 /N expansion
�the polarization operators for different matrix vertices are
calculated in Appendix E�. Since ��q ,���q at large q, the
dressed phonon frequency would grow as �q and �ph would
no longer diverge logarithmically. However, the inelastic
x-ray scattering data for the phonon dispersion33 show that
the phonon dispersion is smaller than the phonon frequency
itself. Thus, the renormalization of the phonon frequency re-
mains small even at q�1 /a, so the perturbative expansion in
�� is more justified, and we neglect the phonon dispersion.

The logarithmically divergent integrals in Eqs. �120� and
�132� have different structure due to different forms of the
screened interaction V�q ,�� and the phonon propagator
D����. In Eq. �120� the integral is dominated by the frequen-
cies ����vq, while in Eq. �132� it is ������, since D����
�1 /�2 at ���
��. Thus, in the calculation of the leading
logarithmic asymptotics it is sufficient to approximate
D�����−2�i���� �see Appendix D�. This substitution
makes the phonon propagator �combined with electron-
phonon vertices� formally analogous to the correlator of a
static disorder potential �in other words, from the point of
view of electrons with �
�� the lattice is effectively fro-
zen�. Thus, renormalizations due to electron-phonon interac-
tion at �
�� are equivalent to those due to static
disorder.39,40,58 This equivalence holds only in the leading
order in electron-phonon coupling, since in higher orders the
phonon propagator is dressed by polarization loops and the
static disorder correlator is not.

1010.2 0.5 2 5
running cutoff (eV)

0

0.05

0.1
λ Ε 2

,λ
Ε 1

λΕ1

λΕ2

/

FIG. 22. Dependence of the dimensionless coupling constant �K

on the running cutoff !maxe
−� �to be identified with the electronic

energy�, represented by three upper curves starting from the bare
value 0.04 at 10 eV, for three values of the bare Coulomb coupling
g�0�=3.4,1.5,0.5 �solid, dashed, and dotted curves, corresponding
to the substrate dielectric constant ��=1,2.3,6.8, respectively� as
determined by Eqs. �128a�–�128c�. The constant ��=0.035 is
unchanged.

D. M. BASKO PHYSICAL REVIEW B 78, 125418 �2008�

125418-30



Logarithmic corrections to the electron-phonon vertex in
the order O�1 /N ,��

2 � are shown in Fig. 23. All diagrams
vanish, except the first one, which gives a nonzero correction
to �K,

�F�
F�

= �Z + 0, �133a�

�FK

FK
= �Z −

��

2�
ln
!max

!min
. �133b�

The diagrams of Fig. 23, however, do not exhaust all loga-
rithmic vertex corrections. In addition, one has to consider
two diagrams, shown in Fig. 24, as they are of the same
order O���

2 � and also logarithmically divergent. They may be
viewed as a correction to the two-electron vertex
��2��p ,� ,p� ,�� ;q ,��. The bare value of ��2� is given just by
the phonon single-phonon propagator, combined to the
electron-phonon vertices. Diagrams of Fig. 24 are evaluated
in Appendix D, and give

��2��p,�,p�,��;q,��

=
v2

2
	��D������z�y � �z�y + �z�x � �z�x�

+ �E1
DK�����y�z � �y�z + �x�z � �x�z�
 , �134a�

���2��p,�,p�,��;q,��

=
v2

2
ln
!max

!min
� �K

2

2�
DE1�+E1�

�����z�y � �z�y + �z�x � �z�x�

+
���E1

�
DE2+E1�

�����y�z � �y�z + �x�z � �x�z�� ,

�134b�

D�+����� �
2��� + ����

�2 − ��� + ��� − io�2 . �134c�

The following features of the expression for ���2� are worth
noting: �i� the matrix structure of ���2� is identical to that of
��2�; �ii� ���2� depends on electronic energies and momenta
only through !min, i.e., logarithmically; and �iii� the � depen-
dence of ���2� is analogous to that of ��2�, but the pole is at
the sum of two-phonon frequencies.

The latter fact has a simple physical meaning. Before the
reduction in the ultraviolet cutoff !max the excitations of the
lattice were phonons with momenta �q�'!max /v, as well as
their combinations. In the theory with the reduced cutoff
!maxe

−�, besides phonons with momenta �q�' �!max /v�e−�,

one has to consider also pairs of phonons with large and
almost opposite momenta q� and q−q�, so that the total mo-
mentum of the pair is �q�'!maxe

−�. Each of the phonons
constituting the pair has �!max /v�e−�' �q�� , �q−q��'!max /v
and thus has been integrated out. The pair, however, having
small total momentum, has to be included into the low-
energy theory as a single excitation. Thus, D�+����� has the
meaning of the propagator of this excitation, and comparing
expressions �134a� and �134b�, one can define electron-two-
phonon vertex by analogy with the electron-phonon one.

Iterations of the RG procedure will generate electron cou-
pling to excitations with larger number of phonons, hence all
these excitations with frequencies n��+n��E1

� have to be
included in the low-energy theory separately. Obviously,
electron coupling to excitations of the type n�+2kE1� will
have the same matrix structure as coupling to the E2
phonons, while coupling to excitations n�+ �2k+1�E1� the
same as to the E1� phonons. Denoting the dimensionless cou-
pling constant for the excitation n��+n��E1

� by �n,n�, we can
generalize the RG equations 	Eqs. �128a�–�128c�
 as follows:

1

g

dg

d�
= −

8f�g�
�2N

+ �
n,k=0

�
�n,2k + �n,2k+1

2�
, �135a�

d�n,2k

d�
=

1

2� �
n�=0

n

�
k�=1

k

�n�,2k�−1�n−n�,2k−2k�+1, �135b�

d�n,2k+1

d�
= � 16f�g�

�2N
− �

n�,k�=0

�
�n�,2k�

� ��n,2k+1

+
1

�
�

n�=0

n

�
k�=0

k

�n�,2k��n−n�,2k−2k�+1. �135c�

These equations can be simply related to Eq. �12� of Ref. 34,
where �� and �A1

denoted the total oscillator strength of all

E2-like and all E1�-like excitations, respectively,

�E2

�Ref. 34� = �
n,k=0

�

�n,2k, �A1

�Ref. 34� = �
n,k=0

�

�n,2k+1.

Namely, Eqs. �12b� and �12c� of Ref. 34 are obtained by
summing Eqs. �135b� and �135c� over n and k.

We will not solve Eqs. �135a� and �135c�, since in
graphene the effect of the electron-phonon interaction turns
out to be negligibly small due to the smallness of ��, �K, as
we mentioned in the beginning of this section. In particular,

(a) (b) (c) (d) (e)

FIG. 23. Diagrams describing the logarithmic correction to the
electron-phonon vertex due to the electron-phonon interaction in the
order O�1 /N ,��

2 �. Diagrams �b�–�e� vanish.
FIG. 24. Logarithmic diagrams of the order O��2� not reduced

to a renormalization of the electron-phonon vertex.
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the modification of the plot in Fig. 22 would not be notice-
able by the naked eye.

IX. SUMMARY

In this paper we have calculated the frequency-integrated
intensities of two- and four-phonon Raman peaks in
disorder-free graphene. We started by writing down the low-
energy Hamiltonian of the interaction of electrons with the
crystal vibrations and the electromagnetic field from pure
symmetry considerations; as a result, we obtained a descrip-
tion of the system in terms of just a few independent cou-
pling constants, considered to be parameters of the theory.
Another parameter of the theory, introduced phenomenologi-
cally, is the electron-scattering rate 2�.

First, we analyzed the one-phonon peak at 1580 cm−1 and
have shown that the scattering is completely off-resonant: the
intermediate electron and hole states in the whole first Bril-
louin zone contribute to the Raman-scattering amplitude. As
a result, the intensity of the peak is expected to be insensitive
to most external parameters: polarization, electron concentra-
tion, degree of disorder, etc. However, according to our re-
sults, it is proportional to the fourth power of the excitation
frequency.

Then we calculated the intensities I2K and I2� of the two-
phonon peaks at 2700 and 3250 cm−1, respectively. We have
shown that two-phonon scattering is fully resonant, so that
the intermediate electron and hole states correspond to real
particles, propagating along the quasiclassical trajectories
and subject to scattering processes. As a result, the intensities
are determined by the electron-scattering rate. Besides, the
quasiclassical character of the process imposes a severe re-
striction on the electron and hole trajectories which can con-
tribute to the two-phonon Raman scattering: upon the pho-
non emission the electron and the hole must be scattered
backward. This restriction results in a significant polarization
memory: it is almost three times more probable for the scat-
tered photon to have the same polarization as the incident
photon than to have the orthogonal polarization.

We have also calculated the intensity I4K of the most in-
tense four-phonon peak at 5400 cm−1. The four-phonon Ra-
man scattering is also fully resonant. As a consequence, we
have shown that measurement of the ratio I4K / I2K enables
one to extract information about the relative contributions of
different processes to the electron scattering rate.

Having compared the experimental two-phonon peak in-
tensities, we extracted the ratio of the corresponding
electron-phonon coupling constants. This ratio turned out to
be significantly different from that obtained earlier from the
density-functional theory calculations. We have shown that
the reason for this discrepancy is the renormalization of the
coupling constants due to the Coulomb interaction between
electrons, missed by DFT calculations based on local or
semilocal approximations for the exchange-correlation func-
tional. In particular, we found that the constant, responsible
for the peak at 3250 cm−1, is enhanced, and this enhance-
ment is in quantitative agreement with the experimental Ra-
man data, provided that the screening of the Coulomb inter-
action by the substrate is weak.
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APPENDIX A: MATRIX ALGEBRA

The natural basis in the 16-dimensional space of all 4

�4 Hermitian matrices is represented by the $i
KK��$ j

AB,

i , j=x ,y ,z ,0, where $i
KK�, $ j

AB, i , j=x ,y ,z, are the Pauli ma-
trices acting in the corresponding subspaces, respectively,

and $0
KK�, $0

AB are the 2�2 unit matrices. The square of each
matrix is equal to 1—the 4�4 unit matrix.

These 16 matrices can be split into two sets: those diag-
onal and those off diagonal in the KK� subspace �i.e., con-

taining $0
KK�, $z

KK� and $x
KK�, $y

KK�, respectively�. These two
sets are invariant with respect to C6v because any transfor-
mation from C6v either �i� leaves K and K� in place �thus
belonging to C3v� or �ii� swaps between K and K� �belonging
to C2C3v� but never mixes them. Thus, these two sets form
two eight-dimensional representations. Both are reduced as
A1+A2+B1+B2+E1+E2, since each set contains a matrix
transforming according to A1; for the valley-diagonal set it is
1, while for the off-diagonal one it is the matrix UC2

of the C2

rotation which commutes with all C6v and is Hermitian since
C2

−1=C2.
Let us focus on the valley-diagonal set. The two matrices

which transform according to E1 �vector� representation will
be denoted by �x, �y. To establish their multiplication rules,
we form the direct product E1�E1=A1+A2+E2. The corre-
sponding linear combinations are

�x�x + �y�y � A1, �A1�

�x�y − �y�x � A2, �A2�

��x�x − �y�y,�x�y + �y�x� � E2. �A3�

Since �x
2=�y

2=1, the proportionality coefficient in the last
line must be zero, so �x�y =−�y�x= i�z. The matrix �z de-
fined in this way �i� is Hermitian, �ii� transforms according to
A2, and �iii� �z

2=1. Thus, it must coincide with the corre-
sponding matrix from the basis �the sign may need to be
changed�. In other words, the set ��x ,�y ,�z� satisfies the
usual Pauli-matrix algebra.

As the subgroup C2v= �E ,�v ,�v� ,C2� is a direct product,
the matrices of B1, B2, A2 representations of the valley-
diagonal set must commute, and the product of any two will
give the third one. Let us denote by �z the matrix of the B1
representation, then that of B2 is �z�z.

The two matrices transforming according to the E2
�pseudovector or tensor� representation are denoted by
�Tx ,Ty��T. Just like for �, using E2�E2=A1+A2+E2, we
establish the Pauli-matrix algebra for the set �Tx ,Ty ,�z�. It is
important that matrices of �a�, �b�, �c� reflections are ex-
pressed in terms of Tx, Ty. Indeed, �i� �a�= ��a��

−1, so its ma-
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trix is Hermitian and its square is equal to 1; �ii� this matrix
is diagonal in the KK� indices; �iii� C3

−1�a�C3=�b�, so the
matrix of �a� cannot belong to a one-dimensional representa-
tion; and �iv� C2�a�C2=�a�, so it must be the E2 representa-
tion. Since we have a rotational arbitrariness in the choice of
Tx ,Ty, we simply fix Ty to be the matrix of the �a� reflection.

The products of � and T can be analyzed by using B1
�E1=B2�E1=E2. The rotational arbitrariness in the choice
of �x, �y can be removed by fixing their behavior under the
�a� reflection: Ty�xTy =�x, Ty�yTy =−�y. The algebraic rela-
tions established earlier leave us with

Tx = − )�z�y, Ty = )�z�x, )4 = 1. �A4�

The sign of ) is not important as one can always redefine
�z→−�z. The difference between real and imaginary ) is
essential, as it determines the symmetry under the time re-
versal and will be discussed below.

The off-diagonal set can be obtained from the diagonal
one by simply multiplying it by UC2

, the matrix of C2, which
transforms according to the identical representation of C6v,
but swaps K and K�. According to the representation algebra,
UC2

commutes with �z, Tx, Ty and anticommutes with �z,
�z�z, �x, �y. Generally, if two Hermitian operators com-
mute, their product is Hermitian, while if they anticommute,
their product is anti-Hermitian, so the proportionality coeffi-
cient in the corresponding algebraic relation must be imagi-
nary. Hence, the matrices of the off-diagonal set can be writ-
ten as UC2

, iUC2
�z, UC2

�z, iUC2
�z�z, iUC2

�x, iUC2
�y,

−UC2
Tx, and −UC2

Ty. Denoting UC2
�z=�x, we recover the

bottom row of Table III, provided that )=1.
To establish the form of the matrix of the C3 rotation, we

note that �i� it must be diagonal in the valley subspace, �ii�
commute with UC2

, and �iii� its third power should be equal
to the unit matrix. This fixes UC3

=e��2�i/3��z.
Now let us establish the symmetry properties of the ma-

trices with respect to the time reversal. The explicit form of
the corresponding matrix UT needs not be specified. We only
note that time reversal must commute with any spatial trans-
formation. Applying this condition to the matrices UC2

, T,
and e2�i�z/3, we obtain UC2

�UC2
, T�T, and �z�−�z.

Next, the time reversal swaps K and K�, so �z�−�z. Ap-
plying the algebraic relations established above, we obtain

�z�
T

− �z, ��
T

− �, �z�
T

− �z, ��
T

− )2� .

�A5�

Next, since the matrices of �a, �b, �c reflections are ex-
pressed in terms of UC2

T, we must have �y���y�, which
fixes )=�1.

To help those readers who prefer to work with a particular
representation, rather than basis-independent algebraic rela-
tions, we give specific expressions for the matrices defined
above. In Ref. 59 the representation is introduced by defining
the column state vector as

� = �
�AK

�BK

�BK�

�AK�

� , �A6�

and the �i, � j� matrices have the form

�x = $z
KK�$x

AB, �x = $x
KK�$z

AB,

�y = $z
KK�$y

AB, �y = $y
KK�$z

AB,

�z = $0
KK�$z

AB, �z = $z
KK�$0

AB, �A7�

where $i
KK�, $ j

AB, i , j=x ,y ,z, are the Pauli matrices acting in

the corresponding subspaces, respectively, and $0
KK�, $0

AB are
the 2�2 unit matrices.

In Ref. 58 the column state vector is defined as

� = �
�AK

�BK

�BK�

− �AK�

� , �A8�

and it is assumed that UK�,A�B��r�=U
K,A�B�
* �r�. In this repre-

sentation the electronic matrices acquire an especially simple

form �i=$0
KK�$i

AB, �i=$i
KK�$0

AB and the time-reversal matrix

UT=$y
KK�$y

AB.

APPENDIX B: EFFECTIVE HAMILTONIAN
IN AN EXTERNAL FIELD

The theory of electrons in a crystal lattice subject to a
magnetic field was developed long ago.60 Here we consider
the specific case of the two-dimensional graphene crystal.

Let us start from the simpler case of the scalar potential
�r ,z�, assumed to be smooth on the scale of the lattice
constant. Definition �9� of the effective Hamiltonian can be
written as

� ��*�r�H�*
 �*�r�d2r =� ��*�r�e�r,z��*�r�

� 	ei�K*−K��rU
�
*�r,z�U*�r,z�
d2rdz .

�B1�

Here � ,*=1,2 ,3 ,4 label the four states with zero energy,
K�,* are K or K�, correspondingly, and summation over re-
peating indices is assumed hereafter, unless stated explicitly
otherwise.

The integration over z in Eq. �B1� is straightforward due
to confinement provided by the Bloch functions. As for the
integration over x, y, we note that the combination of func-
tions in the square brackets can be represented as ��*,��z�
+ ,̃�*�r ,z�, where the second function �i� has zero spatial
average and �ii� is periodic in x, y with the period corre-
sponding to the tripled unit cell. The first term is written
using normalization �7� of the Bloch functions �no summa-
tion over � is assumed�. The rest of the integrand,
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�
�
*�r��r ,z��*�r�, is a smooth function of x, y, i.e., its spatial

harmonics have wave vectors much smaller than the inverse
lattice constant.

To study the integral of an arbitrary smooth function f�r�
with the periodic function ,̃�*�r ,z�, we expand the latter in
the Fourier sum over the reciprocal-lattice vectors G,

,̃�*�r,z� = �
G

�
j=0,�1

C�*
j �G,z�ei�G+jK�r. �B2�

Then the integral can be rewritten in the Fourier space,

� f�r�,̃�*�r,z�d2r = �
G

�
j=0,�1

f̃*�G + jK�C�*
j �G,z� .

�B3�

The sum does not contain the term with G=0, j=0, which
has been excluded from ,̃�*�r ,z� by construction. The Fou-
rier transform of f�r�,

f̃�p� =� e−iprf�r�d2r , �B4�

is rapidly decaying away from p=0. If all spatial derivatives
of f�r� are continuous, this decay is exponential. This leads
to the following expression for the effective Hamiltonian:

H�*
 = e�r,z = 0���* − dzEz�r,z = 0���*, �B5a�

dz =� ez�U��r,z��2
d2rdz

LxLy
, �B5b�

where Ez=−�z. The fact that dz does not depend on � fol-
lows from the transformation properties of the Bloch func-
tions under the �v, �v� reflections. The matrix element be-
tween states with K��K* is small as e−1/�pa� and thus cannot
be included in the regular expansion of the effective Hamil-
tonian in the parameter pa�1.

To describe the effect of an external magnetic field, we
introduce the vector potential A�r ,z� in the gauge Az=0. The
microscopic Hamiltonian is given by

HA = −
e

2c
	Ai�r,z�v̂i + v̂iAi�r,z�
 +

e2

2mc2A2�r,z� ,

v̂ �
− i�

m
. �B6�

In the first order of the k ·p perturbation theory we obtain

−
e

2c
� ��*�r�U

�
*�r,z�e−iK�r	Ai�r,z�v̂i + v̂iAi�r,z�


�eiK*rU*�r,z��*�r�d2rdz

= −
e

c
���v̂i�*� � d2r�

�
*�r�Ai�r,0��*�r�

−
e

2c
��*� d2r�

�
*�r�	Ai�r,0�v̂i + v̂iAi�r,0�
�*�r�

−
e

c
���zv̂i�*� � d2r�

�
*�r�

�Ai�r,0�
�z

�*�r� , �B7�

where we introduced the following notation for the matrix
elements of an arbitrary operator O between the Bloch func-
tions:

���O�*� =� e−iK�rU
�
*�r,z�OeiK*rU*�r,z�

d2rdz

LxLy
. �B8�

We again encounter integrals of smooth functions with peri-
odic ones, such as U

�
*e−iK�rv̂ie

iK*rU*, so the matrix elements
are different from zero only if K�=K*. Recalling that in the
first order of the k ·p perturbation theory the Dirac Hamil-
tonian is obtained as

	H1�p�
�* = ���v̂�*� · p = v��* · p , �B9�

the first term on the right-hand side of Eq. �B7� can be iden-
tified with the gauge elongation p→−i�−�e /c�A in the
Dirac Hamiltonian 	Eq. �28�
.

In the second order of the k ·p perturbation theory one has
to include the contribution of remote bands b�� ∀ �
=1,2 ,3 ,4 with energies Eb taken at the points K ,K�. The
correction to the Dirac Hamiltonian is then given by

	H2�p�
�* =
p2

2m
��* + pipj �

b

�
���v̂i�b��b�v̂ j�*� + �i ↔ j�

2Eb
.

�B10�

The gauge elongation p→−i�−�e /c�A of the first term on
the right-hand side corresponds to the second term on the
right-hand side of Eq. �B7� and the A2 term of HA. The
effective-mass tensor originating from remote bands in Eq.
�B10� is symmetrized with respect to i, j in order to ensure
the Hermiticity of the effective Hamiltonian upon the gauge
elongation. Taking HA in the first order �the contribution of
the div A vanishes, as it is a smooth function� and piv̂i in the
first order, we obtain the following contribution of the re-
mote bands to the effective Hamiltonian:

−
e

c
�

b

�
���v̂i�b��b�v̂ j�*�

Eb
	Ai�r,0�mv̂ j + mv̂iAj�r,0�
 .

�B11�

The ij-symmetric part of this expression corresponds to the
gauge elongation of the last term in Eq. �B10�, while the
antisymmetric part can be rewritten as

−
em

2c
�

b

�
���v̂i�b��b�v̂ j�*� − �i ↔ j�

Eb
	Ai�r,0�v̂ j + v̂iAj�r,0�


=
ie

4c
�

b

�
���v̂i�b��b�v̂ j�*� − �i ↔ j�

Eb
� �Ai�r,0�

�xj
−

�Aj�r,0�
�xi

� .

�B12�

The expression in the square brackets is an antisymmetric
tensor whose xy and yx components are equal to Bz and −Bz,
respectively. Thus, this term corresponds to −�zBz�z term in
Eq. �29�.

Since Bx=−�Ay /�z, By =�Ax /�z, the last term in Eq. �B7�
corresponds to the �xy�Bx�y −By�x� term in Eq. �29�. Using
the facts that �i� �� �z �*�= �dz /e���*, �ii� zv̂i= v̂iz, and �iii�
�� �z �b�= �i /2Eb��� � v̂z �b� �the latter follows from the com-
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mutation relation 	H ,z
=−�i /2�v̂z, valid in the absence of
the field�, we can write

���zv̂i�*� =
dz

e
���v̂i�*� +

i

2�b

�
���v̂z�b��b�v̂i�*�

Eb

=
dz

e
���v̂i�*� −

i

2�b

�
���v̂i�b��b�v̂z�*�

Eb
. �B13�

The contribution of the �dz /e��� � v̂i �*� term to the effective
Hamiltonian has the form −dz�v�xBy −v�yBx� and may be
viewed as the Lorentz force contribution to the −dzEz term.

APPENDIX C: KINETIC EQUATION

Kinetic equation is the most natural way to describe the
dynamics when real quasiparticles �electrons and holes�
move along quasiclassical trajectories, and interference be-
tween different trajectories is suppressed. Since electrons and
holes are created in pairs, the kinetic equation should be
written for the joint distribution function fpe,ph

�re ,rh ; t�—the
joint probability for the electron to be in the elementary vol-
ume of phase space d2red

2pe / �2��2 around re ,pe and for the
hole in the elementary volume d2rhd2ph / �2��2 around rh ,ph.
We write the kinetic equation as

�f

�t
+

� Re !pe

�pe

�f

�re
+

� Re !̄−ph

�ph

�f

�rh

= Stpe,ph

e,out f + Stpe,ph

e,in f + Stpe,ph

h,out f + Stpe,ph

h,in f , �C1a�

Stpe,ph

e,out f = − 2�� d2q

�2��2

FK
2

M�q

�27a2

4
sin2

pe
− pe−q

2

���Re !pe
− Re !pe−q − �q�fpe,ph

, �C1b�

Stpe,ph

e,in f = 2�� d2q

�2��2

FK
2

M�q

�27a2

4
sin2

pe+q − pe

2

���Re !pe+q − Re !pe
− �q�fpe+q,ph

, �C1c�

Stpe,ph

h,out f = − 2�� d2q

�2��2

FK
2

M�q

�27a2

4
sin2

−ph
− −ph+q

2

���Re !̄−ph
− Re !̄−ph+q − �q�fpe,ph

, �C1d�

Stpe,ph

h,in f = 2�� d2q

�2��2

FK
2

M�q

�27a2

4
sin2

−ph−q − −ph

2

���Re !̄−ph−q − Re !̄−ph
− �q�fpe,ph+q. �C1e�

The left-hand side of the kinetic equation �Liouville operator
acting on the distribution function� represents the free propa-
gation of the electron and the hole with the corresponding

�group� velocities ve=� Re !pe
/�pe and vh=� Re !̄−ph

/�ph.
The right-hand side �collision integral� describes emission of
phonons; assuming to be in the linear regime, we have ne-

glected the Fermi statistics of electrons and holes. In what
follows, we will write the out-scattering part of the collision
integral as −2��pe

+ �̄−ph
�fpe,ph

and include it in the Liouville
operator. In the scattering rates 2�pe

,2�̄−ph
we also include

those for emission of electron-hole pairs or other excitations
with broad spectrum; the contribution of such processes to
the in-scattering part of the collision integral is neglected
�see discussion in Sec. I A�.

The Raman signal is treated as a weak probe not affecting
the electron and hole population and thus is not included into
the kinetic equation. It is determined by the radiative recom-
bination rate and can be calculated from the Fermi’s golden
rule. The probability of emission of a photon with a given
polarization eout per unit solid angle, per unit frequency in-
terval, and per unit time is expressed in terms of the joint
distribution function as

4�dI

dooutd�outdt
= 2�� ev

c
�22�c2

�out

�out
2

2�2c3 � d2r
d2p

�2��2

����out − Re !p − Re !̄p�

��	eout� ep
z�2fp,−p�r,r� . �C2�

The easiest way to arrive at this expression is to calculate the
electronic radiative self-energy,

�rad�p,�� = i� ev
c
�2� d3Q

�2��3

d�

2�

2�c2

cQ

2cQ

�2 − �cQ − io�2

��eout · ��
� −� + vp · �

�� −� + io�2 − �vp�2 �e
out
* · �� .

�C3�

Note that the imaginary shift of the poles in the electron
Green’s function is different from prescription �31�. Indeed,
the latter corresponds to the full valence band and empty
conduction band, while radiative recombination requires the
valence band to be empty, hence the shift of both poles to the
lower half-plane of � in Eq. �C3�.

The kinetic equation 	Eqs. �C1a�–�C1e�
 contains no term
corresponding to the generation of electron-hole pairs by in-
coming photons. Instead, we prefer to choose the initial con-
dition at t=0, which would correspond to the electron-hole
population upon arrival of a short pulse of the electromag-
netic field of the total energy �in, i.e., containing a single
photon,

fpe,ph
�re,rh;t = 0�

=
�e2

c
2�	ein� epe


z�2
��re − rh�

LxLy

8�v2

�in

���Re !pe
+ Re !̄−ph

− �in��2��2��pe + ph� .

�C4�

The last � function takes care of momentum conservation
during photon absorption; since the photon momentum is
very small, the electron and the hole must have opposite
momenta. The energy � function ensures that the total energy
of the electron-hole pair is equal to the energy of the
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absorbed photon; the coefficient in front of it is just the in-
verse density of states of electron-hole pairs with zero total
momentum, necessary to preserve the normalization of
fpe,ph

�re ,rh�. The factor ��re−rh� / �LxLy� reflects the fact that
the electron and the hole are born at the same spatial point,
which can be located anywhere in the sample. The angular
factor 2�	ein�ep
z�2 shows that the transition dipole is per-
pendicular to the electron momentum, and the factor of 2
fixes the average to unity. As a result, the integral of
fpe,ph

�re ,rh� over the whole phase space equals �e2 /c, which
is nothing else but the total probability for the incident pho-
ton to be absorbed; all subsequent factors, discussed above,
represent the partitioning of this probability over different
states of the electron-hole pairs. The total probability can be
found directly from the Fermi’s golden rule, and is given by

Lz

c
4�

p
� ev

c
�2�c2

V�in
�2

2���Re !p + Re !̄p − �in� ,

where the factor of 4 keeps track of the valley and spin
degeneracy and Lz /c is the attempt period.

Solution of the kinetic equations 	Eqs. �C1a�–�C1e�
, cor-
responding to emission of n phonons, is obtained by n itera-
tions of the collision integral. First of all, we find the inverse
of the Liouville operator, acting on a source Jpe,ph

�re ,rh ; t�,

� �

�t
+ 2��e + �h� + ve

�

�re
+ vh

�

�rh
�−1

Jpe,ph
�re,rh;t�

= �
−�

t

dt�Jpe,ph
	re − ve�t − t��,rh

− vh�t − t��;t�
e−2��e+�h��t−t��. �C5�

Let us follow evolution of a single electron-hole pair, cre-
ated at t=0 at the point r=0 	evolution of initial condition
�C4� can be obtained by a simple convolution
. The zero-
approximation distribution function is given by

fpe,ph

�0� �re,rh;t� = �2��2��pe − p0��2��2��ph + p0�

���re − vet���rh − vht�e−2�p0
t−2�̄p0

t.

�C6�

After one iteration of the in-scattering part of the collision
integral we obtain the first-approximation correction—the
contribution from electrons and holes which have emitted
one phonon,

fpe,ph

�1� �re,rh;t� = fpe,ph

�e� �re,rh;t� + fpe,ph

�h� �re,rh;t� , �C7a�

fpe,ph

�e� �re,rh;t� = �2��d��ph + p0���rh + v̄0t�e−2�̄p0
t

�
2�FK

2

M�p0−pe

�27a2

4
sin2

p0
− pe

2

���Re !p0
− Re !pe

− �p0−pe
�

��
0

t

dt0�	re − ve�t − t0� − v0t0


�e−2�pe
�t−t0�−2�p0

t0, �C7b�

fpe,ph

�h� �re,rh;t� = �2��d��pe − p0���re − v0t�e−2�p0
t

�
2�FK

2

M�p0−pe

�27a2

4
sin2

p0
− −ph

2

���Re !̄p0
− Re !̄−ph

− �−p0−ph
�

��
0

t

dt̄0�	rh − vh�t − t̄0� + v̄0t̄0


�e−2�̄−ph
�t−t̄0�−2�̄p0

t̄0. �C7c�

After the second iteration we have61

fpe,ph

�2� �re,rh;t� = fpe,ph

�ee� �re,rh;t� + fpe,ph

�eh� �re,rh;t� + fpe,ph

�hh� �re,rh;t� , �C8a�

fpe,ph

�ee� �re,rh;t� = �2��d��ph + p0���rh + v̄0t�e−2�̄p0
t� d2p1

�2��2

2�FK
2

M�p0−p1

�27a2

4
sin2

p0
− p1

2
��Re !p0

− Re !p1
− �p0−p1

�

�
2�FK

2

M�p1−pe

�27a2

4
sin2

p1
− pe

2
��Re !p1

− Re !pe
− �p1−pe

�

� �
0

t

dt1�
0

t1

dt0�	re − ve�t − t1� − v1�t1 − t0� − v0t0
e−2�pe
�t−t1�−2�p1

�t1−t0�−2�p0
t0, �C8b�
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fpe,ph

�eh� �re,rh;t� =
2�FK

2

M�p0−pe

�27a2

4
sin2

p0
− pe

2
��Re !p0

− Re !pe
− �p0−pe

��
0

t

dt0�	re − ve�t − t0� − v0t0


�e−2�pe
�t−t0�−2�p0

t0
2�FK

2

M�p0−pe

�27a2

4
sin2

p0
− −ph

2
��Re !̄p0

− Re !̄−ph
− �−p0−ph

�

� �
0

t

dt̄0�	rh − vh�t − t̄0� + v̄0t̄0
e−2�̄−ph
�t−t̄0�−2�̄p0

t̄0, �C8c�

fpe,ph

�hh� �re,rh;t� = �2��d��pe − p0���re − v0t�e−2�p0
t� d2p̄1

�2��2

2�FK
2

M�p0−p1

�27a2

4
sin2

p0
− p̄1

2
��Re !̄p0

− Re !̄p̄1
− �−p0+p̄1

�

�
2�FK

2

M�−p̄1−ph

�27a2

4
sin2

p̄1
− −ph

2
��Re !̄p̄1

− Re !̄−ph
− �−p̄1−ph

��
0

t

dt̄1�
0

t̄1
dt̄0

��	rh − vh�t − t̄1� + v̄1�t̄1 − t̄0� + v̄0t̄0
e−2�̄−ph
�t−t̄1�−2�̄p̄1

�t̄1−t̄0�−2�̄p0
t̄0. �C8d�

After four iterations we have f �4�= f �eeee�+ f �eeeh�+ f �eehh�+ f �ehhh�+ f �hhhh�. The term contributing to the four-phonon Raman
signal is given by

fpe,ph

�eehh��re,rh;t� =� d2p1

�2��2

2�FK
2

M�p0−p1

�27a2

4
sin2

p0
− p1

2
��Re !p0

− Re !p1
− �p0−p1

�
2�FK

2

M�p1−pe

�27a2

4
sin2

p1
− pe

2

���Re !p1
− Re !pe

− �p1−pe
��

0

t

dt1�
0

t1

dt0�	re − ve�t − t1� − v1�t1 − t0� − v0t0
e−2�pe
�t−t1�−2�p1

�t1−t0�−2�p0
t0

�� d2p̄1

�2��2

2�FK
2

M�p0−p1

�27a2

4
sin2

p0
− p̄1

2
��Re !̄p0

− Re !̄p̄1
− �−p0+p̄1

�

�
2�FK

2

M�−p̄1−ph

�27a2

4
sin2

p̄1
− −ph

2
��Re !̄p̄1

− Re !̄−ph
− �−p̄1−ph

�

� �
0

t

dt̄1�
0

t̄1
dt̄0�	rh − vh�t − t̄1� + v̄1�t̄1 − t̄0� + v̄0t̄0
e−2�̄−ph

�t−t̄1�−2�̄p̄1
�t̄1−t̄0�−2�̄p0

t̄0. �C9�

In terms of this correction, the Raman-scattering probability can be expressed as

4�
dI4K

doout
= 2�� ev

c
�22�c2

�out

�out
2

2�2c3

2�e2

c

8�v2

�in

�� d2r
d2p0

�2��2

d2p2

�2��2 �	ein� ep0

z�2�	eout� ep2


z�2��Re !p0
+ Re !̄p0

− �in�fp2,−p2

�eehh� �r,r� . �C10�

Let us change time integration variables according to

�
0

�

dt��
0

t

dt1�
0

t1

dt0F�t − t1,t1 − t0,t0����
0

t

dt̄1�
0

t̄1
dt̄0F̄�t − t̄1, t̄1 − t̄0, t̄0��

= �
0

�

dt0dt1dt2dt̄0dt̄1dt̄2��t0 + t1 + t2 − t̄0 − t̄1 − t̄2�F�t2,t1,t0�F̄�t̄2, t̄1, t̄0� �C11�

and evaluate the time integral, following Sec. VII C. We obtain

1

2�	v0� v2
z�
�

0

�

dt1dt̄1e−2�xt1−2�yt̄1�
O

dt0 =
1

�	v0� v2
z�
�

0

�/2

d(
)max�(� − )min�(�

8	�x cos ( + �y sin (
3 . �C12�

Rearranging the energy � functions and we arrive at
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4�
dI4K

doout
= 16�2� e

c
�4� �K

2�
�4

v8� d2p0d2p1d2p̄1d2p2�	v0� ein
z�2�	v2� eout
z�2sin2 0 − 1

2
sin2 1 − 2

2
sin2 0 − ̄1

2

�sin2 ̄1 − 2

2
2��Re !p0

+ Re !̄p0
− �in���Re !p1

− Re !p0
+ �p0−p1

���Re !̄p̄1
− Re !̄p0

+ �−p0+p̄1
�

� 2��Re !p2
+ Re !̄p2

− �in + �p0−p1
+ �p1−p2

+ �−p0+p̄1
+ �−p̄1+p2

���Re !p2
− Re !̄p2

− Re !p0
+ Re !̄p0

+ �p0−p1

+ �p1−p2
− �−p0+p̄1

− �−p̄1+p2
�

1

�	v0� v2
z�
�

0

�/2

d(
)max�(� − )min�(�

8	�x cos ( + �y sin (
3 . �C13�

The first four � functions constrain the electronic momenta to
lie on the resonant manifold �Fig. 16�. The argument of the
fifth � function is nothing but �, defined in Eq. �86b�. For
�q=�0 this � function equals either � in electron-hole sym-
metric case or 0 in the electron-hole asymmetric case. Thus,
Eq. �C13� makes sense only for dispersive phonons. In this
case it gives the probability four times smaller than that
given by Eqs. �93� and �105�. One factor of 2 is due to the
constructive interference of the amplitudes for the two spin
projections: the spin degeneracy multiplies the matrix ele-
ment obtained by tracing in the electron loop. The other fac-

tor of 2 is due to the constructive interference of two-time-
reversed processes, described in the end of Sec. VII A, which
may also be viewed as the interference of the processes in
the two valleys.

APPENDIX D: LOGARITHMIC TERMS IN SELF-ENERGY
AND VERTEX CORRECTIONS

The RPA-dressed Coulomb propagator �122� determines
the electron self-energy,

�ee�p,�� = i� d�

2�

d2q

�2��2V�q,��G�p − q,� − �� = −� d-

2�

d2q

�2��2V�q,i-�G�p − q,� − i-�

�
16g

N � d-

2�

d2�vq�
�2��2

1

vq

��vq�2 +-2

gvq + ��vq�2 +-2�−
i- + vq�

-2 + �vq�2 +
� + vp�

-2 + �vq�2 +
2�i�- − vpq��i- + vq��

	-2 + �vq�2
2 �
=

4g

�2N�!min

!max

d!�
−�

�

d-
�!2 +-2

g! + �!2 +-2� !2 −-2

�-2 + !2�2� +
-2

�-2 + !2�2vp��
�

8

�2N�ln
!max

!min
��

0

�

d��− � + vp��
g

2�1 + g sin �
+ �2� − vp��

g sin2 

2�1 + g sin ��
=

8

�2N�ln
!max

!min
���− � + vp��

g arccos g
�1 − g2

+ �2� − vp���1 −
�

2g
+

arccos g

g�1 − g2�� . �D1�

In the first line we have performed the Wick rotation �= i- �corresponding to the Matsubara representation for zero tempera-
ture�. In the second line we have expanded G�p−q ,�− i-� to the first order in � and vp, since the integral is dominated by
-�vq
�, vp. In the third line we have integrated over the directions of q. In the fourth line we have replaced the integration
region with the momentum cutoff !min'vq'!max, −�'-'� by the region !min'��vq�2+-2'!max, which does not change
the leading logarithmic asymptotics. The lower cutoff !min�max�vp ,��, while the upper cutoff !max�v /a is of the order of the
electronic bandwidth.

Let us now calculate the Coulomb correction to an arbitrary matrix vertex −i��p ,� ;q ,��, corresponding to the process,
shown in Fig. 25,
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���p,�;q,�� = i� d��

2�

d2q�

�2��2V�q�,���G�p + q�,� − �����p + q�,� + ��;q,��G�p + q + q�,� + � + ���

= −� d-

2�

d2q�

�2��2

2�e2

q�

��vq��2 +-2

gvq� + ��vq��2 +-2

� − i- + v�p + q�� · �

�− i� +-�2 + v2�p + q��2

���p + q�,� + ��;q,��
� − � − i- + v�p + q + q�� · �

�− i� + i� +-�2 + v2�p + q + q��2

�
e2

2�v
�
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d!�
−�

�
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�!2 +-2

g! + �!2 +-2

-2� − !2���/2
�-2 + !2�2

=
4g

�2N
ln
!max

!min
�

0

�

d
�1 − sin2 �� − sin2 ���/2

1 + g sin 
=

8

�2N
ln
!max

!min
	 f̃�g�� − f�g��� + ���/2�
 . �D2�

Here we have assumed that the dependence of ��p ,� ;q ,��
on p and � is weak. If this dependence comes entirely from
the renormalization, which is true in our case, its weakness is
due to the smallness of the parameter 1 /N.

Let us repeat the calculation of self-energy �50� due to
electron-phonon interaction,

�ph�p,�� = −� d-

2�

d2q

�2��2�
�

F�
2

2M��

�27a2

4
D��q,i-�

������G�p − q,� − i-������

� ��� + �K� � d2�vq�
�2��2

�

�vq�2

= ��� + �K��ln
!max

!min
� �

2�
, �D3�

where the phonon mode index � runs over the two modes
belonging to the E2 representation and the two modes be-
longing to the E1� representation, the corresponding matrices
����� being −�z�y, �z�x, �x�z, �y�z. Note that the here
the integral is dominated by -�max�� ,���, in contrast with
the Coulomb self-energy where we had -�vq. Thus, to
calculate the integral in Eq. �D3� we simply approximated

D��q,i-� →
2��

−-2 − ��
2 � − 2���-�, �-�
��.

�D4�

The sum of the two diagrams in Fig. 24 gives the follow-
ing expression for the effective two-electron vertex 	we de-
noted p� ��p ,��, q� ��q ,�� for compactness
:

���2��p� ,p� �;q� � = i� d3q��

�2��3 �
�,��

F�
2

2M��

�27a2

4

F��
2

2M���

�27a2

4

�D��q� − q���D���q��������G�p� + q���

������� � 	�����G�p� � − q���������

+ ������G�p� � − q� + q��������
 . �D5�

Due to condition �D4�, we can approximate

G�p� + q��� � − G�p� � − q��� � G�p� � − q� + q��� � −
vq · �

�vq�2 .

�D6�

Then the frequency integral is simply

i� d��

2�
D��� − ���D������ =

2��� + ����

�2 − ��� + ��� − io�2

� D�+����� . �D7�

Taking the q� integral, we obtain

���2��p� ,p� �;q� � =
v2

4
ln
!max

!min
�
�,��

�����

2�
�1

2
������i������

� 	− ������i������ + �������i�����
� .

�D8�

The matrix expression appearing in the braces is evaluated
for each of the 16 combinations of the indices �, �� in Table
IV. Adding up the contributions, we obtain Eq. �134b�.

p, ε p + q
ε + ω

δ

q, ω

q, ω

p, ε q′, ω′

ε + ω + ω′
p + q + q′

p + q
ε + ω

p + q′

ε + ω′=

FIG. 25. Coulomb correction to a generic vertex −i��p ,� ;q ,��
shown by the triangle.
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APPENDIX E: POLARIZATION OPERATOR

Polarization operator with arbitrary matrix vertices �i, � j,
i , j=x ,y ,z ,0 �we denoted �0�1�, can be conveniently cal-
culated in the coordinate representation,62

− i�ij�r − r�,t − t��

=
N
2

Tr
4�4

��iG�r − r�,t − t��� jG�r� − r,t� − t�� , �E1�

�i�t + iv� · ��G�r,t� = 1��r���t� . �E2�

If � matrices are also present in the vertices, tracing of them
is trivial; the matrices in the two vertices must coincide for
the trace not to vanish, then their product is equal to the unit
matrix.

It is convenient to switch to the imaginary time $= it, i�t
→−�$. Then Green’s function in the coordinate representa-
tion can be found by using the analogy with the 3D Coulomb
problem. Namely, we introduce the third dimension z=v$
and note that

�− �$ + iv� · ���− �$ − iv� · �� = v2�3D
2 . �E3�

Since the inverse of the 3D Laplacian is the Coulomb poten-
tial, we obtain

G�r,$� = ��$ + iv� · ��
1

4�v�v2$2 + r2
= −

v$ + i� · r

4��v2$2 + r2�3/2 .

�E4�

Using auxiliary relations �here i , j=x ,y ,z�,

Tr
4�4

��i�k� j�l� = 4�ik� jl + 4�il� jk − 4�ij�kl, �E5a�

�i� j
1

R2 =
8xixj − 2�ijR

2

R6 , R2 = x2 + y2 + z2, �E5b�

we calculate the polarization operator �here i , j=x ,y�,

�00�r,$� = − N v2$2 − r2

8�2�v2$2 + r2�3 =
N

32�2 ��x
2 + �y

2�
1

v2$2 + r2 ,

�E6a�

�zz�r,$� = − N v2$2 + r2

8�2�v2$2 + r2�3 = −
2N

32�2�3D
2 1

v2$2 + r2 ,

�E6b�

�ij�r,$� = N4xixj − 2�ij�v2$2 + r2�
16�2�v2$2 + r2�3

=
N

32�2�i� j
1

v2$2 + r2 +
�ij

2
�zz, �E6c�

�0i�r,$� = − N izxi

8�2�v2$2 + r2�3 = −
N

32�2

i

v
�$�i

1

v2$2 + r2 .

�E6d�

Using the 3D Fourier transform

� d3R
eiQR

32�2R2 =� d3R

�2��3

�

4R2eiQR =
1

16

1

Q
, �E7�

we obtain ��q ,�� �up to a q ,�-independent constant com-
ing from r ,$→0�,

�00�q,�� = −
N

16v2

v2q2

�v2q2 − �2
, �E8a�

�0i�q,�� = −
N

16v2

�vqi

�v2q2 − �2
, �E8b�

�ij�q,�� = −
qiqj

q2

N
16v2

�2

�v2q2 − �2

+ ��ij −
qiqj

q2 � N
16v2

�v2q2 − �2, �E8c�

�zz�q,�� =
2N

16v2
�v2q2 − �2, �E8d�

�0z�q,�� = 0, �E8e�

�iz�q,�� = 0. �E8f�

Given the polarization operator, one can find corrections to

TABLE IV. The matrix expression in the braces in Eq. �D8� evaluated for all 16 combinations of the
phonon indices � ,��.

� ,�� −�z�y �z�x �x�z �y�z

−�z�y 0 0 �y�z ��y�z �x�z ��x�z

�z�x 0 0 �y�z ��y�z �x�z ��x�z

�x�z �y�z ��y�z �y�z ��y�z 0 �z�y ��z�y +�z�x ��z�x

�y�z �x�z ��x�z �x�z ��x�z �z�y ��z�y +�z�x ��z�x 0
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the optical phonon frequencies due the electron-phonon in-
teraction,

DK
−1�q,�� −

�K

2
v2�zz�q,�� = 0 ⇒ ��K�q� �

�K

4
�v2q2 − �K

2 ,

�E9a�

D�,L
−1 �q,�� −

��

2
v2�T�q,�� = 0 ⇒ ���,L�q� �

��

8
�v2q2 − ��

2 ,

�E9b�

D�,T
−1 �q,�� −

��

2
v2�L�q,�� = 0

⇒ ���,T�q� � −
��

8

��
2

�v2q2 − ��
2

. �E9c�

At vq'�� the square roots are imaginary which corre-
sponds to the decay of phonons into the continuum of
electron-hole pairs.
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